
Introduction to Computational Physics

Pascal Debus ∗

Thomas Gersdorf†

ETH Zurich, Fall 2014

Abstract

This is a short summary of the lecture Introduction to Computational Physics given by Professor Hans J. Herrmann
at ETH Zurich in fall 2013. It is strongly focuses around the expected exam questions and hence not complete.

1 General

1.1 Relevant questions

• Congruential and lagged-Fibonacci RN

• Definition of percolation

• Fractal dimension and sand-box method

• Hoshen-Kopelman algorithm

• Finite size scaling

• Integration with Monte-Carlo

• Detailed Balance and MR2T2

• Ising model

• Simulate random walk

• Euler method

• 2nd order Runge-Kutta

• 2nd order predictor-corrector

• Jacobi and Gauss-Seidel relaxation

• Gradient methods

• Strategy of finite elements, finite volume and spectral
methods

2 Random number generators

Random numbers:

• Sequence of numbers in random or uncorrelated order

• Probability for occurrence of a number is always the
same

• Computers are completely deterministic

• Use a deterministic algorithm such that numbers are

– almost homogeneously

– randomly distributed

• → Computers generate pseudo-random-numbers

2.1 Congruential (multiplicative) genera-
tors

Create a sequence xi with two integer numbers c, p and
seed x0:

xi = (cxi−1) mod p (1)

creates random numbers in the interval [0, p− 1]
Divide by p to map to [0, 1[and obtain normalized pseudo
random numbers:

0 ≤ zi =
xi
p
< 1 zi ∈ Q

All integers are smaller than p, hence, the sequence must re-
peat atfer at least (p−1) iterations, which is the maximal
period of this RNG.

Carmichael: Maximal period is p− 1, can be obtained if
p is a Mersenne prime number M = 2prime−1 and smallest
number with cp−1 mod p = 1.
Park/Miller: p = 231 − 1 = 21474834647, c = 16807 for
32-bit integers.

Testing of RNGs: plot in 2D or 3D to show correlations
between two(xi, xi+1) or three(xi, xi+1, xi+2) consecutive
random numbers.

Marsaglia-Theorem: For a congruential RNG the ran-
dom numbers in an n-cube test lie on parallel (n − 1)-
dimensional hyperplanes.

cRNG are in general very fast but do not produce
good random numbers.

∗pdebus@student.ethz.ch
†thomas@gersdorf.tel

1

2.2 Lagged Fibonacci (additive) genera-
tors

• permit very large periods

• allow for adventageous predcitions about correlations

Consider a sequence xi ∈ {0, 1} of binary numbers, 1 ≤ i ≤
b:

xb+1 =

∑
j∈J

xb+1−j

 mod 2, J ⊂ {1, . . . , b}

The generator performs a certain operation on the previous
numbers.
Example: Random number is result of some binary opera-
tion of two previous numbers (two element lagged Fibonacci
generator):

xi = xi−c ⊕ xi−d := (xi−c + xi−d) mod 2 (2)

Note: Initial sequence is necessary, for d ≤ c at least c bits
long.

Zierler-Trinomial condition for c and d: If

Tc,d (r) = 1 + zc + zd (3)

cannot be factorized in subpolynomials, then maximal pe-
riod 2c − 1, where z is binary and c ususally chosen up to
10000.
This statement is part of a theorem of Compagner, stat-
ing also:

〈xixi−k − 〈xi〉2〉 = 0

The smallest numbers satisfying the above relation are
(c, d) = (250, 103)(Kirkpatrick and Stoll, 1981).

Conversion from binary number to natural number
e.g. uint32

• 32 LFRNG paralell (very efficient) BUT also 32 initial
sequences needed which must be uncorrelated each by
itself and among each other.

• Extract 32 bit long part of a sequence: Slow and
strong correlations.

Lagged Fibonacci RNGs are much slower than
cRNGs but produce good random number se-
quences.

2.3 Testing of RNGs

Most important tests:

• n-dimensional cube test (square in 2D, cube in 3D)
should show no correlations between n consecutive
random numbers, should be homogeneous

• average value s̄ = lim
N→∞

1
N

∑
i

si !
=

1
2

• fluctions of mean value (χ2) test: distribution around
mean value should be Gaussian-like (large k limit of
chi-squared-distribution N (k, 2k))

χ2 =

k∑
i=1

(Ni − npi)2

npi
(4)

• spectral test: FFT, Fourier spectrum should corre-
spond to white noise (no peaks, no correlations)

• no correlations 〈si ∗ si+d〉 −
〈
s2
i

〉
!
=0

• Marsaglia’s Diehard test battery

2.4 Non-uniform distributions

Congruential and lagged Fibonacci produce numbers in N
following a uniform distribution.

Pu(z) =

{
1, if z ∈ [0, 1)

0, else

Assume z is uniformly distributed, and y according to the
desired distribution, then we can obtain the analytic map-
ping by the condition∫ y

0

P (y′) dy
!
=

∫ z

0

Pu(z′) dz′

X 1 x

1

f(x)

U 1 x

1

p(x)

=

2.4.1 Analytic mapping

Transform random numbers from uniform distribution to
some distribution given by P (y):

y =

 y∫
0

P (y′) dy′

−1

(z) (5)

if a closed-form analytical integral expression and its inverse
exists.

Examples:

• Poisson P (y) = ke−ky such that y = − 1
k log(1− z)

• Gaussian P (y) = 1√
πσ
e−

y2

σ

by Box-Muller-Method, which transforms two un-
correlated uniformly distributed random variables

2

z1, z2 by

y1 =
√
−σ log(1− z2) sin(2πz1)

y2 =
√
−σ log(1− z2) cos(2πz2)

2.4.2 Rejection method

For distributions that cannot be inverted analytically:

Square around distribution with lengths A an B, generate
random 2D points (Bz1, Az2).
Let P (y) be the distribution of interest with the necessary
condition the it is well-behaved:(i.e. finite over the domain
of interest):

P (y) < A ∀y ∈ [0, B] A,B ∈ R

• Generate (z1, z2) ∈ [0, 1) and map to bounding box
⇒ (Bz1, Az2)

• Reject if Az2 > P (Bz1) (Point above bounding box)

• Generalization: Use bounding distribution Q(y) with
P (y) < λQ(y) instead of box.

λh(x)

f(x)

3 Percolation

3.1 Concept of percolation

Definition(Material Science and Chemistry):
Percolation describes movement and filtering of fluids
through porous media.

Percolation model has some universal features of criti-
cal phenomena, these features do not depend on the prac-
tical model that is used.

Important point in that context: system-spanning cluster
(the percolating cluster) at the critical point (e.g. poly-
merization). Percolation threshold occurs at some crit-
ical occupation probability pc (or multiple parameter pi,c)
such that infinite connectivity (percolation) is achieved.
(Once we have a spanning cluster the percolation transition
occurs)

Definition Universality (statistical mechanics):
Properties for a large class of systems are independent of
dynamical details of the system. Systems display univer-
sality in the scaling limit, a large number of interacting
parts.

Definition of scaling: A function f(x, y) that can be ex-
pressed as a function f(x′)/

3.2 The percolation model

Typical modeling: Occupy some lattice with probability p.
Check for connected paths.

3.2.1 Burning method

Define square lattice, set one side ”on fire” and continue by
burning next neighbors.

• Provides boolean feedback for the existence of a clus-
ter

• also calculates the minimal path length

1. Label all occupied cells in the top line with the marker
t = 2

2. Iteration step t+ 1

(a) Go through all cells and find the cells which have
label t

(b) For each of the found t-label cells do

i. Check if any direct neighbor (N,E,S,W) is oc-
cupied and not burning (label 1)

ii. Set found neighbors to label t+ 1

3. Repeat step 2 (with t = t + 1) until either there are
no neighbors to burn any more or the bottom line has
been reached, then the latest label minus 1 defines the
shortest path.

3.2.2 Percolation threshold

Probability to obtain spanning-cluster depends on occupa-
tion probability. For a critical probability pc (= 0.5927
for 2D site-lattice) percolation is achieved.
pc actually defined for an infinite cluster.
Finite Case: pc is interpreted as average probability at
which the first percolating cluster appears.

3

The transition from low to high wrapping probability be-
comes more abrupt with the lattice size: Wrapping proba-
bility approaches step function for infinite lattice size.

The threshold is a characteristic value for a given latice
type(e.g. honey comb lattice has the highest 2D probabil-
ity)

3.2.3 The order parameter

Consider probabilities p > pc.

Order parameter
is fraction of occupied sites that belong to the largest
spanning cluster.

P (p) ∝=

{
(p− pc)β p > pc

0 p < pc
(6)

β = 5
36 (2D),≈ 0.41(3D)

• Power law behavior close to percolation threshold

• dimension-dependent exponent β

(universal criticality)
Example:

• phase transition

• magnetization

• percolation

3.3 Hoshen-Kopelman algorithm

Define lattice as matrix Nij and occupy randomly where
a value of 0 means unoccupied and 1 occupied. Obtain
cluster size distribution algorithmically, scan lattice left-
then-down:

1. start with mass-of-cluster array Mi and number of
clusters starting at k = 2 (0,1 are already taken)

2. move through lattice Nij and for each (i, j):

(a) if both top and left are empty, new cluster:
k ← k + 1, Nij ← k,Mk ← 1

(b) if occupied and only one of (top,left) occupied
with k0, append to cluster: Nij ← k0,M(k0)←
M(k0) + 1

(c) if occupied and top and left occupied, append
site to one of them Nij ← k1,Mk1 ← Mk1 +
Mk2 +1 and reference second cluster to first clus-
ter Mk2

= −k1

(d) if cluster with negative mass occurs, use refer-
ence to original cluster

3. for k ≤ 2 . . . kmax do:
sum up cluster masses to get cluster size distributions
(only positive numbers) if Mk > 0 then n(Mki) =
n(Mki) + 1

• Recursive detection(Stop of we have found a k0 with
Mk0≥0)

• Algorithm scales linearly O(n)

3.3.1 Cluster size distribution

Behavior of the relative cluster size ns

Subcritical occupation:
power law X expontial

Critical occupation:
exponential

Overcritical occupation
expontial decay

np(s) ∝

s−θe−as p < pc
s−τ p = pc

ebs
1− 1

d p > pc

(7)

where τ = 187
91 (2D),≈ 2.18(3D) Rescaled distribution

ñp(s) =
np(s)

npc(s)

4

Comparison non-critical distributions np to cluster
size distribution for pc (npc):

np(s) = s−τR± [(p− pc)sσ]

with the help of the scaling function R±, plot ñp(s)
against (p− pc)sσ

Second moment of cluster size distribution is a power law:

χ =

〈 ∑
s w.o. biggest

s2n(s)

〉
∝ C |p− pc|−γ (8)

where γ = 43
18 ≈ 2.39(2D),1.8(3D)

Due to the divergence aorund pc, χ is a strong indicator of
pc

Connection to the Ising model:
Magnetic susceptibility diverges near critical temperature.

Scaling exponent relation:

γ =
3− τ
σ

3.3.2 Size dependence of the order parameter

Size of the larges cluster at percolation threshold (p =
pc) is power law in the lattice size

s∞ ∝ Ldf (9)

df is the fractal dimension!

Derivation in finite-size effects chapter, yielding

df = d− β

ν
(10)

df = 91
48 (2D),≈ 2.51(3D)

Universality: Coefficients β and ν are universal, hence
df , the fractal dimension, is universal.

3.3.3 The shortest path

Shortest path of spanning cluster is a power law

ts ∝ Ldmin (11)

dmin =

1.13, 2D

1.33, 3D

1.61, 4D

(12)

5

4 Fractals

How well does a fractal object fills a certain space

Self-Similiarity: Object that is built up of smaller copies
of itself.

4.1 Fractal dimension

A fractal dimension is statistical index of complexity
that measures how details in a pattern changes with the
measurement scale.

4.1.1 Formal definition

Fractal dimension of an object
Cover object with d-dimensional spheres of radius ri < ε.
Consider all possible covering by spheres and let Nε(c) be
the number of spheres in the covering c. The resulting vol-
ume is given by:

Vε(c) =

Ni(c)∑
i

rdi (13)

Minimize number of spheres and volume containing the ob-
ject

V ∗ε = min
Vε(c)

(
min
Nε(c)

(Vε(c))

)
(14)

Then fractal dimension is

df := lim
ε→0

log
V ∗
ε

εd

log L
ε

(15)

where L is the length of the system.

Infinitesimal limit (ε→ 0) of the mathematical definition:

V ∗ε
εd

=

(
L

ε

)df
(16)

Interpretation of the fractal dimension(s): When
length is stretched by a factor a, its volume or mass grows
by a factor of adf .

Example: Consider the Sierpinski-triangle and stretch one
side by the factor 2. This increases the volume(area) by a
factor 3.

⇒ df =
log 3

log 2
≈ 1.585

4.2 Box counting method

Determine fractal dimension of a fractal object by super-
imposing lattice of lattice constant ε and plot number of

non-empty N(ε) sites as a function of 1
ε in a log-log-plot

and determine df with

df =
logN(ε)

log 1
ε

(17)

in a region with constant slope.

4.3 Sandbox method

Put a box around the center of a fractal object, increase
box size and measure mass of fractal object part inside the
box.

df =
logM(R)

logR
(18)

4.4 Correlation function method

The correlation function is a measure for the amount of
order in a system and describes the correlation of micro-
scopic variables over distance.
Intuitive Idea: A Large value implies that two quantities
strongly influence each other.

Correlation function of the density at the origin and at ra-
dius r.

c(r) = 〈ρ(0)ρ(r)〉av (19)

with some suitable averaging (for instance different origins).

The correlation function method counts the number of filled
site within bandsize ∆r and normalizes the expression with
the surface area at r.

6

Fractal dimension is obtained by fitting

c(r) ∝ rdf−d (20)

Correlation function can also be written as

c(r) =
Γ
(
d
2

)
2πd/2rd−1∆r︸ ︷︷ ︸

surface area at radius r

[M(r + ∆r)−M(r)]︸ ︷︷ ︸
number of sites in δr

(21)

4.5 Correlation Length ξ

Correlation length is the typical length scale over which
the correlation functions decays

c(r) ∝ C + e−
r
ξ (22)

with an offset C, vanishing in the subcritical regime. Fur-
thermore, in this regime, the correlation length is propoer-
tional to the radius of a typical cluster.

Correlation length is singular at pc

ξ ∝ |p− pc|−ν (23)

where ν = 42
89 (2D), 0.88(3D) At p = pc correlation function

decays like a power law:

c(r) ∝ r−(d−2−η) (24)

with η = 5
24 (2D),−0.05(3D)

4.6 Finite size effects

Correlation length ξ cannot be larger than system size L,
therefore maximum instead of a singularity:

The correlation length gets cut at the size L of the system
Use two points p1, p2 bounding the critical region, then

L = ξ(p1) ∝ (p1 − pc)−ν

p1 − p2 ≈ 2(p1 − P − c)

assuming pc lies approximately in the center of the region.

It follows for the size of the critical region:

(p1 − p2) = L−
1
ν (25)

Conclusion: If L → ∞, the critical region vanishes, which
is impossible with a finite PC.
Hence we need to extrapolate the behavior

Close to pc (extrapolation not scaling):

peff(L) = pc

(
1− aL− 1

ν

)
(26)

4.7 Finite size scaling

Consider the second moment χ of the cluster size distribu-
tion as a function of p and L.
→ can be reduced to a one variable function.
Self-similarity of percolating clusters near critical point

χ (p, L) = L
γ
νNχ

[
(p− pc)L

1
ν

]
(27)

where Nχ is the scaling function.

Plotting χ against p for several L-values, leads to differences
at the critical value(peak height)

At p = pc the scaling function approaches a constant and

χmax = L
γ
ν (28)

⇒

7

If we find an expression for the size of the peak depending
only on L as well as introducing new parameters, based on
previous one, a data collapse happens:
Only one parameter is necessary to describe the data.

Size depence of the Order parameter
Fraction of sites in the spanning cluster at pc:

s∞ ∝ Ldf

⇒ PLd = s∞ ∝ Ldf

4.7.1 Fractal dimension in percolation

Fraction of sites in spanning cluster (order parameter):

P (p) = (p− pc)β (29)

consider P as function of p and L, then finite size scaling

P (p, L) = L−
β
νNP

[
(p− pc)L

1
ν

]
(30)

At p = pc order parameter

P = L−
β
ν (31)

and number of sites of the spanning cluster

s∞ = M ∝ Ldf (32)

depends on the system size.

We know

M = PLd = L−
β
ν+d !

=L
df (33)

df = d− β

ν
(34)

4.8 Cellular automata

Discrete model of grid cells, each can have a finite number
of states, in some finite dimension. Completely deter-
ministic discrete time evolution: After each time step,
calculate new state as function of previous state of all grid
cells.

5 Monte-Carlo-Methods

Main advantage: Error decreases with number of
samples N like

∆ ∝ 1√
N

(35)

5.1 Applications of Monte-Carlo

Calculation of π: Use quarter of circle r = 1 to approximate
π
4 .

π

4
=

1∫
0

√
1− x2 dx (36)

Monte-Carlo algorithm: count number of random points
inside the circle:

π(N) = 4
Ninside

N
(37)

5.2 Computation of integrals

Basic method: Pick N random points xi in the integral
interval and approximate integral

b∫
a

g(x) dx ≈ (b− a)

N

N∑
i=1

g(xi) (38)

One doesn’t need to integrate analytically!

Simple sampling, good for smooth functions.

Importance sampling:

b∫
a

g(x) dx =

b∫
a

g(x)p(x)

p(x)
dx ≈ (b− a)

N

N∑
i=1

g(xi)

p(xi)
(39)

p(x) is the distribution functions which is the distribution
we use to choose the random points (transform uniform
random number distribution to this distribution function).

Remaining requirement (less strong): Just g(x)
p(x) needs

to be smooth.

5.2.1 Error of integration

Convetional methods:e.g. trapezium rule over [x0, x0 +
∆x]∫ x0+∆x

x0

dx = f(x0)∆x+
1

2
f ′(x0)∆x2 +

1

6
f ′′(x0)∆x3 + · · ·

=
1

2
(f(x0) + f(x0 + ∆x))∆x︸ ︷︷ ︸

trapezium rule

+O(∆x3)

Hence, the error behaves like ∝ ∆x3

Compound trapezium rule: [x0, x1] will be subdivided
into N pieces with length ∆x = x1−x0

N :∫ x1

x0

≈ ∆x

2

N−1∑
j=0

[f(x0 + j∆x) + f(x0 + (j + 1)∆x)]

=
∆x

2
[f(x0) + 2f(x0 + ∆x) + 2f(x0 + 2∆x) + · · ·

+2f(x0 + (N − 1)∆x) + f(x1)]

• Error for each step ∝ ∆x3 (as calculated above)

• Cumulative Error N ×O(∆x3) = NO(N−3)O(N−2)

Generalization for d ≥ 2
8

• Segment: ∆xd+2, T ∝ N ∝ 1
∆xd

,∆x ∝ T− 1
d

• Cumulative: ∝ ∆x2 ∝ T− 2
d

Monte-Carlo-Error
Assume N equidistant points in [a, b] with h = b−a

N , then

I =

∫ b

a

g(x) dx ≈ b− a
N

N∑
i=1

g(xi) = (b− a)〈g〉 =: Q

where 〈g〉 is the sample mean of the integrand.

Variance

var(g) =: σ2 =
1

N − 1

N∑
i=1

(g(xi)− 〈g〉)2

where the denominator N − 1 is due to unbiasedness of the
estimator.
By the central limit theorem follows then the variance of
our integral Q:

var(Q) = (b− a)2 operatornamevar(g)

N
= (b− a)2σ

2

N

⇒ δQ ≈
√

var(Q) = (b− a)
σ√
N

Summary:
Conventional numerical integration with N equidistant

points (distance h = (b−a)
N) in 1D:

area = A ∝ 1

N2
∝ 1

T 2
(40)

Error goes as

∆ ∝ (AN)2 ∝ 1

N2
∝ (∆x)2 (41)

Trapezian rule:

∆ ∝ (∆x)2 ∝ 1

N2
∝ (T)

2
d (42)

since

T ∝ N ∝ 1

(∆x)d
(43)

⇒ error independent of dimension, but computation time
not.

For d dimensions conventional:

T ∝ N ∝
(

1

∆x

)d
(44)

⇒ ∆x ∝ T− 1
d (45)

∆ ∝
(
N∆x∆xd

)2
= T−

2
d (46)

For d dimensions Monte-Carlo:

∆ ∝ 1√
N
∝ T− 1

2 (47)

Comparison of errors
There is a critical dimension, where MC becomes more ef-
ficient

T−
2
d

!
=

1√
T

dcrit = 4

5.3 Higher-dimensional integrals

Example: Hard Spheres placed in 3D Volume: Consider
N hard spheres with radiu R placed in a 3D box with Vol-
ume V .
The distance between two points is given as

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

From the hard sphere/no overlap condition follows that

rij > 2R .

We want to compute the average distance 〈rij〉 between
two centers:

〈rij〉 =
1∫

d3r1 d3r2 . . . d3rN︸ ︷︷ ︸
=:Z−1

∫
2

N(N − 1)
× (48)

×
∑
i<j

rij d3r1 d3r2 . . . d
3rN (49)

The MC-approach to solve this problem is as follows:

• Choose particle position (center of the sphere)

• If sphere overlaps with already existing one: retry

• after placement of all spheres calculate the average
rij

5.4 Canonical Monte-Carlo

Ensemble: Large number of identical systems

Microcanoncial ensemble: Closed system with constant
N,T, U (inner energy).

Canonical ensemble: Closed system with heat reservoir
and fixed N,T, V

Grand canonical ensemble: Open system (exchange
heat and particles with environment) with fixed µ, T, V

Ensemble average over phase space Λ with probability
measure dµ (normalization with partition function)

〈f〉 =

∫
Λ

f dµ = f t = lim
T→∞

1

T

∫ T

0

f(x(t)) dt (50)

• The normalizing factor of the measure is called par-
tition function

• From the ergodic hypothesis follows that all mi-
crostates are equiprobable

• The energy of configuration X is E(X)

• Probability (at thermal equilibrium) given by

peq =
1

ZT
e
−E(X)
kBT

with the partition function ZT =
∑
X e
−E(X)
kBT .

9

Discrete ensemble average

〈Q〉 =
∑
X

Q(X) peq︸︷︷︸
Boltzmann

(X) (51)

Problem of Sampling
It is inefficient to calculate ensemble averages in an
equally distributed system. Hand-waving argument:
Peak of energy increase as

√
Ld, but system size increases

as Ld, therefore relative peak width decreases with in-
creasing system size.

5.4.1 Markov chains

Start in configuration X and propose new configuration Y
with probability T (X → Y).

Properties for proposing a new state:

• Ergodicity: reach any possible configuration after
finite number of steps (A state is ergodic if it is ape-
riodic and positively recurrent)

• Normalization:
∑
Y

T (X → Y) = 1

• Reversibility: T (X → Y) = T (Y → X)

→ not every new configuration is also accepted.

Accept a new configuration with some acceptance proba-
bility to control dynamics (e.g. temperature dependence),
therefore total Markov chain acceptance probability
(Overall probability of a configuration making it through
both steps.)

W (X → Y) = T (X → Y)︸ ︷︷ ︸
Transition Prob

· A(X → Y)︸ ︷︷ ︸
Acceptance Prob

(52)

(Can also be interpreted as conditional probability of ac-
ceptance for given y)

Master equation

dp(X, t)

dt
=
∑
Y

p(Y)W (Y → X)−
∑
X

p(X)W (X → Y)

(53)

where p(x, t) is the probability to find x in time t

Properties of W (x→ Y):

• Ergodicity: ∀X,Y W (X → Y) > 0

• Normalization:
∑
Y

W (X → Y) = 1

• Homogeneity:
∑
Y

pst(Y)W (Y → X) = pst(X)

5.4.2 Detailed Balance

The stationary states of the Markov chains,

dp(X, t)

dt
= 0 (54)

should model Boltzmann equilibrium distribution:

pst(X) = peq(X) =
1

ZT
e
−E(X)
kBT ∀X (55)

⇒
∑
Y

peq(Y)W (Y → X) =
∑
Y

Peq(X)W (X → Y) (56)

One finds the detailed balance condition

peq(X)W (X → Y) = peq(Y)W (Y → X) ∀X,Y (57)

such that the steady state is the thermal equilibrium.

Since W (X → Y) = T (X → Y) · A(X → Y) and
T (X → Y) = T (Y → X) one can rewrite the detailed
balance condition to

peq(X)A(X → Y) = peq(Y)A(Y → X) ∀X,Y (58)

5.4.3 MR2T2

Basic Idea: Carry out importance sampling through a
Markov Chain. Acceptance probability is

A(X → Y) = min

(
1,
peq(Y)

peq(X)

)
(59)

= min

(
1,

1
Z e
−E(Y)

kT

1
Z e
−E(X)

kT

)
(60)

= min
(

1, e−
(E(Y)−E(X))

kT

)
(61)

(62)

A(X → Y) = min
(

1, e
∆
kBT

)
Always accept transitions to lower energy. Thermal equi-
librium is enforced by detailed balance.

5.4.4 Glauber dynamics

Acceptance probability is

A(X → Y) =
e−

∆E
kT

1− e−∆E
kT

(63)

Glauber dynamics are superior at low temperatures due to
different acceptance formulation.

10

5.5 Ising model

Consider a discrete collection of N binary variables(spins)
σi ∈ {−1,+1} Hamiltonian

H = E = −
∑
i,j

Jijσiσj −Hiσi (64)

Coupling Jij = J is typically just for nearest neighbors and
Hi usually homogeneous external field.

Example: 1D ferromagnetic Ising: E =
∑
i σiσi+1.

5.5.1 Monte-Carlo-Algorithm

1. Choose randomly site i having spin state σi

2. Calculate

∆E = E(Y)− E(X) =
∑

<i,j>n.n.

2Jσiσj

= 2Jσihi

hi =
∑

n.n ofi

σj

3. If ∆E < 0 flip spin

4. If ∆E ≥ 0 flip spin with probability e−
∆E
kT

Sweep: Group of N steps.

Magnetization Let M be the magenetization, χ magnetic
susceptibility and H the magnetic field strength. Then

M = χH (65)

M(T) =
1

N
lim
H→0

N∑
i=1

σi (66)

∝
{
|Tc − T |β T < Tc

0 T > Tc
(67)

where β = 1
8 (2D), 0.326(3D). We have a singularity at the

critical temperature(or a maximum if the system is finite
).

Magnetic susceptibility

M = χH (68)

χ ∝ (T − Tc)−γ (69)

Energy and heat capacity Energy increases with T (S-
like curve), heat capacity has peak at Tc

5.6 Binary mixtures and Kawasaki dy-
namics

Now two species with constant Na and Nb.

Kawasaki Dynamics: Choose A-B pair (bond), calcu-
late energy difference and flip with Metropolis or Glauber
probability.

6 Random walk

Probability to go n1 steps to the right

PN (n1) =

(
N
n1

)
pn1qN−n1 (70)

Average distance consists of moving to the left and right:

〈m〉 = 〈n1〉 − 〈n2〉 (71)

= (p− q)N (72)

with

〈n1〉 =
∑
n1

n1

(
N
n1

)
pn1qN−n1 (73)

〈∆m2〉 = 〈(m− 〈m〉)2〉 = 〈m2〉 − 〈m〉2 = 4Npq (74)

space covered: √
〈∆m2〉 =

√
N

7 Solving equations

Newton method

xn+1 = xn −
f(xn)

f ′(xn)
(75)

n-dimensional case: use Jacobi matrix.

Secant method

xn+1 = xn − (xn − xn−1)
f(xn)

f(xn)− f(xn−1)
(76)

n-dimensional case: use approximation to Jacobi matrix.

Bisection Method: Choose two starting values x0 and x1

below and above x-axis, calculate

signf(xm) = signf(
x0 + x1

2
) (77)

and use xm and one of the two starting values as new values
to repeat method.

False position method: Same idea, but use not arith-
metic mean of x1 and x0 but secant.

8 Ordinary Differential Equations

General first order ODE with initial value problem:

dy

dt
= f(y, t) (78)

with

y(t0) = y0. (79)

Examples include radioactive decay

dN

dt
= −λN (80)

and cooling of coffee

dT

dt
= −γ(T − Troom (81)

11

8.1 Order of a numerical method

Definition of the order of a numerical method with discrete
time steps:

A method is locally of order n if error at one time step
is O((∆t)n).

The error over a whole interval T consisting out of m time
steps (m(∆T) = T)

mO((∆t)n) =
T

∆t
O((∆t)n) = O((∆t)n−1) (82)

and hence the order is globally of order n− 1.

8.2 Euler method

Simplest finite differences method, the Euler method:

1. use initial value y(t0) = y0 as starting point

2. calculate
dy

dt
with y(t0) = y0 and t = t0

3. advance linearly in t:

y(t+ ∆t) = y(t) + ∆t
dy(t)

dt
(83)

4. repeat

The Euler method are the first two terms in the Taylor
expansion of the function around t0:

y(t0 + ∆t) = y(t0) + ∆t
dy

dt
(t0) +O((∆t)2) (84)

= y(t0) + ∆t(y0, t0)︸ ︷︷ ︸
:=y(t1):=y1

+O((∆t)2) (85)

Euler method is locally of order 2 and globally of order 1,
error accumulates:

Improve method by making time steps ∆t smaller.

8.3 Generalization to n-order ODEs

Write nth-order ODE as n coupled differential equations:

dfi
dt

= fi(y1, y2, . . . , yn, t) (86)

Euler method is then

yi(tn+1) = yi(tn) + ∆tfi(y1, y2, . . . , yn, t) +O((∆t)2)

(87)

8.4 Runge-Kutta Methods

Runge-Kutta methods are the q-order generalization of the
Euler method, which is the first order method.

Derive from Taylor expansion:

y(t+ ∆t) = y(t) +
(∆t)

1!

dy

dt
+

(∆t)2

2!

d2y

dt2
+ . . . (88)

+
(∆t)q

q!

dqy

dtq
+O((∆T)q) (89)

8.4.1 2nd order Runge-Kutta Methods

1. Perform Euler step of size ∆
2 , starting at initial vlaue

yi(t0)

yi(t+
1

2
∆t) = yi(t) +

1

2
∆tf(yi(t), t)

2. Calculate derivative at the reached point

3. advance full time step with calculated derivative as
slope

4. Repeat previous steps

yi(t+ ∆t) = yi(t) + ∆t

[
yi

(
t+

1

2
∆t

)
, t+

1

2
∆t

]
(90)

+O((∆T)3) (91)

8.4.2 4th order Runge-Kutta Methods

Define

k1 = f(yn, tn) (92)

k2 = f(yn +
1

2
(∆t)k1, tn+ 1

2 (∆t)) (93)

k3 = f(yn +
1

2
(∆t)k2, tn +

1

2
(∆t)) (94)

k4 = f(yn + (∆t)k3, tn + (∆t)) (95)

and calculate

yn+1 = yn + ∆t

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
+O((∆T)5)

(96)
12

8.4.3 q-stage Runge-Kutta method

The Runge-Kutta method can be generalized, defined by
the so-called stage (number of terms in summation):

yn+1 = yn + ∆t

q∑
i=1

ωiki (97)

with

ki =

f(yn + ∆t

i−1∑
j=1

βijkj , t+ (∆t)αi

 αi = 0 (98)

The coefficient are ambiguously defined in a Butcher ar-
ray:

8.4.4 Order of q-stage Runge-Kutta

Up to RK4, the stage corresponds to the order of the
method. In general not true, instead:

A Runge-Kutta method is of order p if the right side van-
ished up to order p:

y(t+ ∆t)− y(t) =

p∑
m=1

(∆t)m

m!

[
dm−1f

dm− 1

]
︸ ︷︷ ︸

!
=

0

+O((∆t)p+1)

(99)

Therefore

q∑
i=1

ωiki =

p∑
m=1

(∆t)m

m!

[
dm−1f

dm− 1

]
+O((∆t)p+1) (100)

9 Error estimation

The Runga-Kutta methods suffer from errors that are being
summed up. To improve the method, the error should be
estimated and the method be improved. Furthermore, the
Runge-Kutta methods are single-step methods which in-
clude only one previous point into the calculation. Instead
more previous steps can be included to improve the method
⇒ predictor corrector.

9.1 Improvement using error estimation

Let Φ be the evolution operator of the method with order
p: Calculate difference between 2x method with time step
∆t(called y2) and 1x method with time step 2(∆t) (called
y1:

δ = y
(2∆t)
1 − y2×(∆t)

2 (101)

y(t+ 2∆t) =

{
y1 + (2∆t)p+1Φ +O((∆t)p+2)
y2 + 2(∆t)p+1φ+O((∆t)p+2)

(102)

⇒ δ = (2p+1 − 2)Φ +O((∆t)p+2) (103)

⇒ y(t+ ∆t) = y2 +
2δ

2p+1 − 2
+O((∆t)p+2) (104)

method is better since error is one order higher.

For instance for RK4:

y(t+ ∆t) = y2 +
δ

15
+O((∆t)6) (105)

9.2 Adaptive time steps

Basis idea: Use error estimates to adapt time step size.

(∆t)new = (∆t)old

(
δexpected

δmeasured

) 1
p+1

(106)

since δ ∝ (∆t)p+1.

9.3 Predictor-Corrector method

Multistep method Idea: carry out Euler step with arith-
metic mean of derivative at y(t) and y(t+ ∆t):

y(t+ ∆t) ≈ y(t) + ∆t

(
f(y(t), t) + f(y(t+ ∆t), t+ ∆t)

2

)
(107)

But: Implicit equation, cannot be solved directly. Use a
prediction method, in this case Taylor expansion, to predict
value of f(y(t+ ∆t), t+ ∆t):

yp(t+ ∆t) = y(t) + ∆t
dy

dt
(t) +O((∆t)2) (108)

Now compute corrected value of y(t+∆t) with the corrector

yc(t+ ∆t) = y(t) (109)

+ ∆t

(
f(y(t), t) + f(yp(t+ ∆t), t+ ∆t)

2

)
+O((∆t)3)

(110)

This is referred as PEC, one can also do PECEC: the cor-
rected value can be inserted into the corrector once more
(or many times, can be done iteratively) to obtain a better
approximation.

Higher-order predictor-corrector methods: Include
higher terms in the predictive Taylor expansion:

yp(t+ ∆t) = y(t) +
∆t

1!

dy

dt
(t) +

(∆t)2

2!

d2y

dt2
(t) (111)

+
(∆t)3

3!

d3y

dt3
(t) +O((∆t)4) (112)

13

For instance, include first four terms for 3rd order predictor
method.

Insert Taylor predictor(new predictor instead of the one
above) into(

dy

dt

)c
(t+ ∆t) = f(yp(t+ ∆t), t+ ∆t)) (113)

Error is

δ =

(
dy

dt

)c
(t+ ∆t)−

(
dy

dt

)p
(t+ ∆t) (114)

Correct (express everything except the first derivative
which is already defined):

yc(t+ ∆t) = yp + c0δ (115)(
d2y

dt2

)c
(t+ ∆t) =

(
d2y

dt2

)p
+ c2δ (116)(

d3y

dt3

)c
(t+ ∆t) =

(
d3y

dt3

)p
+ c3δ (117)

with Gear coefficients

c0 =
3

8
c2 =

3

4
c3 =

1

6
(118)

Coefficients are obtained in a similar way to the Runge-
Kutta methods, just by requiring the method to be of a
certain order.

Higher order methods become very complex, e.g. 5th order
Runge-Kutta method.

9.4 Sets of coupled ODEs

Straight-forward generalization to coupled ODEs:

dfi
dt

= f(y1, . . . , yN , t) (119)

9.5 Stiff differential equations

Success of a computational method is often not only gov-
erned by the quality of the method and the stepsize.

Some stiff equations are numerically unstable unless you
choose a very small stepsize.

Example:

dy

dt
= −15y(t) (120)

becomes very unstable unless good method is used
(Adams-Moulton in this case).

y(t+ ∆T) = y(t) +
1

2
∆t (f(y(t), t)− f(y(t+ ∆t), t+ ∆t)) +O(∆t2)

For sets of a equations a large eigenvalue is an indication
that a set of equation is unstable.

10 Partial Differential Equations

Types of PDEs for two-variable PDEs:

a(x, t)∂2
xu(x, t) + b(x, t)∂x∂tu(x, t) + c(x, t)∂2

t u(x, t)
(121)

+d(x, t)∂xu(x, t) + e(x, t)∂tu(x, t) + f(u, x, t) = 0
(122)

• elliptic for a(x, t)c(x, t)− b(x,t)2

4 > 0

• parabolic for a(x, t)c(x, t)− b(x,t)2

4 = 0

• hyperbolic for a(x, t)c(x, t)− b(x,t)2

4 < 0

10.1 Discretization of derivatives

Find solution of a PDE by using discrete space, i.e. a lat-
tice.

10.1.1 First derivative in 1D

Implement first derivatives as two-point formulas

dΦ

dt
=

{
Φ(xn+1)−Φ(xn)

∆x +O((∆x))
Φ(xn)−Φ(xn−1)

∆x +O((∆x))
(123)

or as three-point formulas

dΦ

dt
=

Φ(xn+1)− Φ(xn−1)

2∆x
+O((∆x)2) (124)

10.1.2 Second derivatives

(using the two-point-formulae)

d2Φ

dt2
=

Φ(xn+1) + Φ(xn−1)− 2Φ(xn)

(∆x)2
+O((∆x)2) (125)

in two dimensions:

∆Φ =
1

(∆x)2
[Φ(xn+1, yn) + Φ(xn−1, yn) (126)

+ Φ(xn, yn+1) + Φ(xn, yn−1)− 4Φ(xn, yn)] +O((∆x)2)
(127)

10.2 Poisson equation

Discretize space:

• xn with n = 1, . . . , N

• Φn = Φ(xn)

• Φn+1 + Φn−1 − 2Φn = ∆x2ρ(xn)

• Φ0 = C0, Φ1 = C1 (Dirichlet BC)
14

−2 1 0
1 −2 1 0 . . .

0 1 −2
. . .

...
...

. . .
. . .

. . .
...

Φ1

Φ2

...
ΦN−1

 = −

c0
0
...
c1

In 1D:

∂2Φ

∂x2
= ρ(x) (128)

Need to solve A
#‰

Φ = b !

Use linear equation solvers to solve the matrix equation.
Do not use Gaussian elimination since it takes forever.

2D:

Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1 − 4Φi,j = ∆x2ρi,j

10.3 Jacobi method

Simplest relaxation method (relaxation ≈ smoothing oper-
ators on the matrices)

Decompose

A = D + U + L (129)

Now Jacobi method is

#‰

Φ(t+ 1) = D−1(
#‰

b − (U + L)
#‰

Φ(t)) (130)

Method is very slow, therefore terminate after precision is
smaller than some required accuracy:

δ′(t+ 1) =

∣∣∣∣∣∣ #‰

Φ(t+ 1)− #‰

Φ(t)
∣∣∣∣∣∣∣∣∣∣∣∣ #‰

Φ(t)
∣∣∣∣∣∣ ≤ ε (131)

Evolution operator of error and error from

#‰

δ (t+ 1) = A−1 #‰

b − #‰

Φ(t+ 1) (132)

= −D−1(U + L)︸ ︷︷ ︸
Λ

(
A−1 #‰

b − #‰

Φ(t)
)

︸ ︷︷ ︸
δ(t)

= −Λ
#‰

δ (t)

(133)

Λ is evolution operator for the error and the largest eigen-
value should have a norm smaller than one for convergence
of the method.
Hence

Φn = Φ∗ + λn #‰c

10.3.1 Error in Jacobi method

How to find eigenvale λ
We pick up one factor λ from every iteration.

‖ #‰

Φ(n+ 1)− #‰

Φ(n)‖
‖ #‰

Φ(n)− #‰

Φ(n− 1)‖
≈ λn+1 − λn

λn − λn−1
= λ

Link between real error δ and error δ′

δ(n) =
‖ #‰

Φ∗ − #‰

Φ(n)‖
‖Φ(n)‖

≈
#‰

Φ∗ − #‰

Φ∗ − λn #‰c

‖ #‰

Φ(n)‖

=
‖ #‰c ‖
‖ #‰

Φ(n)‖
λn

δ′(n) =
‖ #‰

Φ(n+ 1− #‰

Φ(n))‖
‖Φ(n)‖

≈ ‖
#‰

Φ∗ + λn+1 #‰c − #‰

Φ∗ − λn #‰c ‖
‖ #‰

Φ(n)‖

=
‖ #‰c ‖
‖ #‰

Φ(n)‖
λn︸ ︷︷ ︸

δ(n)

|λ− 1| = δ(n)|λ− 1|

Hence we have

δ(n) ≈ δ′(n+ 1)

1− λ

and finally after rewriting 1− λ

δ(n) =
‖ #‰

Φ(n+ 1)− #‰

Φ(n)‖‖ #‰

Φ(n)− #‰

Φ(n− 1)‖
‖ #‰

Φ(n)‖(‖ #‰

Φ(n)− #‰

Φ(n− 1)‖ − ‖ #‰

Φ(n+ 1)− #‰

Φ(n)‖)

Application to the Poisson equation on a 2D grid:

Φij(n+ 1) =
1

4
(Φi+1,j(n) + Φi−1,j(n) (134)

+ Φi,j+1(n) + Φi,j−1(n)− bij) (135)

Important here: formular is recursive, each Φij(n + 1) de-
pends on all previous Φij(n). That means that one copy of
Φij(n) has to be kept in memory!!

10.4 Gauss-Seidel

#‰

Φ(t+ 1) = (D + U)−1
(

#‰

b − L #‰

Φ(t)
)

(136)

Error evolution operator is

Λ = (D + U)−1L (137)

(Note: U is now in the ”denominator”, hence there is
a faster convergence!) → The largest EV of Λ becomes
smaller.

Stopping criteria

δ =

∣∣∣∣∣∣ #‰

Φ(t+ 1)− #‰

Φ(t)
∣∣∣∣∣∣

(1− λ)
∣∣∣∣∣∣ #‰

Φ(t)
∣∣∣∣∣∣ ≤ ε (138)

The update scheme of Gauss-Seidel does not require back-
ups and just overwrites old data(compare script p.116):

Φi(t+ 1) = − 1

aii

 N∑
j=i+1

aijΦj(t) +

i−1∑
j=1

aijΦj(t+ 1)− bj

15

10.4.1 Gauss-Seidel-Error

δ(t+ 1) = A−1 #‰

b − (D + U)−1(
#‰

b − L #‰

Φ(t))

= −(D + U)−1LA−1 #‰

b − #‰

Φ(t)︸ ︷︷ ︸
δ(t)

= −−(D + U)−1L︸ ︷︷ ︸
Λ

δ(t)

Method is faster and needs less memory space since
the old matrix can be overwritten.

10.4.2 Successive Over-Relaxation

Improve convergence even further with an over-relaxing pa-
rameter 1 ≤ ω ≤ 2:

#‰

Φ(t+ 1) = (D + ωU)−1
(
ωb+ [(1− ω)D − ωL]

#‰

Φ(t)
)

(139)

Denominator is increased with ω yielding faster conver-
gence. For ω = 1 we obtain Gauss-Seidel again.
The parameter ω must not be pushed too far, otherwise we
risk blow-up.

10.5 Gradient methods

• use functionals measuring the error of a solution of a
system of equations

• unique solution ↔ function is paraboloid with mini-
mum a exact solution.

• functional defined byresidual #‰r

Define residual (something like the error estimate) as

#‰r = A
#‰

δ = A(A−1b− Φ) = b−A #‰

Φ (140)

Minimize functional

J = #‰r TA−1 #‰r =

{
0, if Φ = Φ0

> 0, else
(141)

Substitute #‰r :

J = (
#‰

b −A #‰

Φ)TA−1(
#‰

b −A #‰

Φ) = bTA−1b+ ΦTAΦ− 2
#‰

bΦ

Let Φi be the ith approximation and define
#‰

Φ → #‰

Φ + α
#‰

d

(
#‰

d is the direction of descent) and minimize functional
J with respect to α. Calculate

∂J
∂α

= 2
#‰

d Ti (ᾱiA
#‰

d i − #‰r) = 0

Optimal value:

ᾱi =

#‰

d ti
#‰r i

#‰

d tiA
#‰

d i
(142)

ᾱi needs to be computed in each step and is different for
different methods.

Requirements for the gradient method: Matrix should be
SPD (used as a scalar product in CG)

10.5.1 Steepest descent method

Pick the direction
#‰

d in the direction of steepest descent,
where gradient is minimal (largest negative gradient). In
this case this is the direction of the residuum #‰r .

1. Choose
#‰

d i = #‰r i =
#‰

b −A #‰

Φi

2. Evaluate and store #‰u i = A #‰r i
Needs N2 operations for N equations, N if A is
sparse.

3. Calculate length of the step αi =
#‰r ti

#‰r i
#‰r i

#‰u i︸︷︷︸
=A #‰r i

4. Advance
#‰

Φi+1 =
#‰

Φi + αi
#‰r i

5. Update residual: #‰r i+1 = #‰r i + αi
#‰u i

6. Iterate until error (use residuum to estimate error
#‰r = A

#‰

δ) is less than required precision

Problem: Steepest descent is not necessarily the
shortest path to the minimum. Improve method
with conjugate gradients.

10.5.2 Conjugate Gradient method

Takes functional, deforms it such that it looks like a regular
paraboloid and performs steepest descent.
The new direction is chosen conjugate (orthogonal) to all
previous direction.

16

Use Gram-Schmidt orthogonalization procedure to produce
a direction

#‰

d i that is conjugate for all previous
#‰

d j (using

A as the metric,
#‰

d iA
#‰

d j = δij):

#‰

d i = #‰r i −
∑
j

#‰

d jA
#‰r i

#‰

d jA
#‰

d j

#‰

d j (143)

1. Initialize Φ1 and r1 =
#‰

b −A #‰

Φ1,
#‰

d 1 = #‰r 1

2. Calculate temporary scalar c = 1
#‰
d Ti A

#‰
d i

3. Compute length of the step αi = c #‰r Ti
#‰

d i

4. Advance
#‰

Φi+1 =
#‰

Φi + α
#‰

d i

5. Calculate new residual #‰r i+1 =
#‰

b −A #‰

Φi+1 and stop if
residuum is smaller than required precision: |r|2 < ε

6. Compute direction of the next step:
#‰

d i+1 = #‰r i+1 −(
c #‰r i+1A

#‰

d i

)
#‰

d i

7. Repeat

10.5.3 Biconjugate Gradient methods

Might be alternative when matrix is not SPD, use two resid-
uals in parallel:

#‰r =
#‰

b −A #‰

Φ
#‰

d 1 = #‰r (144)

#̃‰r =
#‰

b −AT #‰

Φ
#̃‰

d 1 =
#‰
˜#‰r (145)

10.6 Effort for linear matrix equation
solvers

The algorithms are especially efficient for sparse matrices,
since the computing time is

sparse NxN matrix-vector product⇒ O(N) (146)

full NxN matrix-vector product⇒ O(N2) (147)

The Gaussian procedure computing time is roughly O(N3)
for a N ×N matrix.

10.7 Preconditioning

Numerical problems if a matrix is badly conditioned, i.e.
diagonal elements are approximately the sum of the other
elements in a row.

Find some matrix P−1 that is a good approximation of the
inverse of the matrix A:

P−1A
#‰

Φ = P−1 #‰

b (148)

Jacobi-Preconditioner: Use diagonal elements of A for
P, inverse is easy.

Pij = Aijδij ⇒ P−1
ij = δij

1

Aij

SOR TODO

10.8 Multigrid Procedure

Dynamically switch between different resolutions to obtain
better results.

11 Finite element method

11.1 Strategy of finite elements

• Use a dynamic grid (typically with triangulation),
which is finer at critical points and coarser when func-
tion is well-behaving

• Instead of using a discrete grid introduce basis func-
tions

11.2 Difference to finite differences

• Finite difference are easier to implement because of
very regular grid, but is restricted to handle shapes
and models with rectangular geometry

• Finite elements can handle complicated geometries
and boundaries with relative ease

• FEM are so to speak a generalization of the FDM.

Example: Poisson equation in 1D, Dirichlet boundary con-
ditions.

d2Φ

dx2
(x) = −4ρ(x), Φ(x)|γ = 0

Expand Φ in terms of localized basis functions:

11.3 Basic idea and basis functions

Expand field function in terms of the localized basis func-
tions:

Φ(x) =

∞∑
i

aiui(x) ≈ ΦN (x) =

N∑
i

aiui(x) (149)

and take only a finite number of basis functions.

Obtain expansion coefficients by introduction of so-called
weight-function wi(x)

n∑
i=1

ai

(
−
∫ L

0

d2ui
dx2

wj(x) dx

)
︸ ︷︷ ︸

Aij

= 4π

∫ L

0

ρ(x)wj(x) dx︸ ︷︷ ︸
bj

for j ∈ {1, . . . , N}
17

11.3.1 Galerkin method

Choose

wj(x) = uj(x)

We obtain N coupled equations and for a sensible chosen
basis the derivatives of the basis fucntion need not to be
found numerically.

Aij = −
∫ L

0

u′′i (x)wj(x) dx =

∫ L

0

u′i(x)w′j(x) dx

bj(x) = 4π

∫ L

0

ρ(x)wj(x) dx

A #‰a =
#‰

b

Take hat basis functions

ui(x) =

(x−xi−1)

∆x for x ∈ [xi−1, xi]
(x−xi−1)

∆x for x ∈ [xi, xi+1]
0 otherwise

(150)

and get for ∆x = xi − xi−1

Aij =

∫ L

0

u′i(x)u′j(x) dx =

2/∆x, if i = j

−1/∆x, if i = j + 1

0, else

Non-homogeneous Dirichlet BC: Φ(0) = Φ0, Φ(L) =
Φ1

Use the following decomposition:

ΦN (x) =
1

L
(Φ0(L− x) + Φ1x+

N∑
i=1

aiui(x))

11.3.2 Non-Linear PDEs

Example:

Φ(x)
d2Φ

dx2
(x) = −4πρ(x)

⇒
∫ L

0

[
Φ(x)

d2Φ

dx2
+ 4πρ

]
wk(x) dx = 0

and we obtain the following set of equations:

∑
i,j

Aijkaiaj = bk, Aijk =

∫ l

0

ui(x)u′′j (x)wk dx

Use Picard Iteration:

1. Initial guess Φ0

2. Solve Linear Equation

Φ0(x)
d2Φ1

dx2
(x) = −4πρ(x)

3. Iterate

Φn
d2Φn+1

dx2
(x) = 4πρ(x)

11.3.3 Basis function in higher dimension

• 2D: triangle of a triangulation for instance: piecewise
continuous polynomials

• Linearization: Φ(r) ≈ c1 + c2x+ c3y

• Paraboloid: Φ(r) ≈ c1 +c2x+c3y+c4x
2 +c5xy+c6y

2

→ smooth transitions between elements are possible

2D Standard Form (Reference Element):

x = x1 + (x2 − x1)ξ + (x3 − x1)η

y = y1 + (y2 − y1)ξ + (y3 − y1)η

η =
(y − y1)(x2 − x1)− (x− x1)(y2 − y1)

D

ξ =
(x− x1)(y3 − y1)− (y − y1)(x3 − x1)

D
D = (y3 − y1)(x2 − x1)− (x3 − x1)(y2 − y1)

Coordinate Transformation

∇xΦ =

(
∂Φ

∂x
,
∂φ

∂y

)
→∇ξΦ =

(
∂Φ

∂ξ

∂ξ

∂x
+
∂Φ

∂η

∂η

∂x
,
∂Φ

∂ξ

∂ξ

∂y
+
∂Φ

∂η

∂η

∂y

)
Also transfer integration area Gj → T with T being the
reference triangle.

det J =
∂x

∂ξ

∂y

∂η

∂x

∂η

∂y

∂ξ
= D

and the transformed integral become∫ ∫
Gj

Φ2
x + Φ2

y dx dy)

=

∫ ∫
T

(
c1Φ2

ξ + 2c2ΦξΦη + c3Φ2
η

)
dη dξ

c1 =
(y3 − y1)2

D
+

(x3 − x1)2

D

c2 =
(y3 − y1)(y2 − y1)

D
+ 2

(x3 − x1)(x2 − x1)

D

c3 =
(y2 − y1)2

D
+

(x2 − x1)2

D

Finally we obtain the following description of the basis
functions on the triangle:

18

Linear: determined by having value 1 in one corner and 0
in the other two corners:

N1 = 1− ξ − η
N2 = ξ

N3 = η

Quadradtiv: 6 points on each triangle, value 1 in one
point, 0 in the five others.

N1 = (1− ξ − η)(1− 2ξ − 2η)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = 4ξ(1− ξ − η)

N5 = 4ξη

N6 = 4η(1− ξ − η)

Shorthand notation:

Φ(ξ, η) =

6∑
i=1

φiNi(ξ, η) =
#‰

φ
#‰

N(ξ, η)

11.3.4 Variational Approach

Basic idea: Minimization of

E =

∫ ∫
G

(
1

2
(∇Φ)2 +

1

2
aΦ2 + bΦ

)
dxdy

+

∫
Γ

(a
2

Φ2 + βΦ
)

ds

where the first integral is the volume and the second is the
surface contribution

Variation:

δE =

∫ ∫
G

(∇ΦδΦ + aΦδΦ + bδΦ) dxdy

+

∫
G

(aΦδΦ + βδΦ) ds

Greens Theorem:∫ ∫
G

∇u∇v dxdy

= −
∫ ∫

G

v∆udxdy +

∫
Γ

∂u

∂n
ds

such that the Variation becomes:

δE =

∫ ∫
G

(−∆Φ + aΦ + b) δΦ dxdy

=

∫
Γ

(
αΦ + β +

∂Φ

∂n

)
δΦ ds = 0

2 different cases for Volume part ∆Φ = aΦ + b

• a = 0: Poisson Equation

• b = 0: Helmholtz Equation

Rewrite Volume Term

E =
∑

jElemente

∫ ∫
Gj

(
(∇Φ)2 + aΦ2 + bΦ

)
dx dy

⇔E =
#‰

ΦTA
#‰

Φ + b
#‰

Φ

and it follows

∂E

∂Φ
= 0 ⇒ AΦ + b = 0

11.4 Time-dependent

Semidiscretization: Kep time continuous and discretize
space,
→ obtain set of coupled ODEs and evolve along time line

11.4.1 Method of Lines

Example:

∂T

∂t
(#‰x , t) =

κ

cρ
∆T (#‰x , t) +

1

cρ
W (#‰x , t)

where T local temperature, c specific heat, ρ den-
sity(homogeneous), κ thermal conductivity (const), W
sinks and sources.

Step formulation in 2D:

T (xij , t+ ∆t) = T (xij , t) +
κ∆t

Cρ∆x2
T̃ij(t) +

∆t

cρ
W (xij , t)

T̃ij(t) = T (xi+1,j , t) + T (xi−1,j , t) + T (xi,j+1, t) + T (xi,j−1, t)− 4T (xij , t)

which corresponds to explicit Euler (forward Euler) for the
time step

Stability

• ∆x,∆t must be chosen carefully (especially too big
∆t leads to blow up)

• e.g. if prefactor κ∆t
Cρ∆x2 ≥ 1

4 : The last summand of T̃ij
cancels the leading contribution or courses negative-
positive oscillations of temperature.

Courant-Friedrich-Levvy(CFL) stability condition

κ∆t

cρ∆x2
<

1

4
19

11.4.2 Crank-Nicolson-method

T (x, t+ ∆t) = T (x, t) +
κ∆t

2cρ
(∆T (x, t+ ∆T (x, t+ ∆t)))

+
∆t

2cρ
(W (x, t) + w(x, t+ ∆t))

(Implicit method of second order)

Define for n ∈ {1, . . . , L2}:
#‰

T (t) = (T (xn, t))
‰

W (t) = (W (xn, t)) and the dis-

cretized Laplace operator

OT (xn, t) =
κ∆t

cρ∆x2
(T (xn+1, t) + T (xn−1) + T (xn+L, t) + T (xn−L, t)− 4T (xn, t))

and rewrite the method equation:

T (x, t+ ∆t) = T (x, t) +
1

2
(OT (x, t) +OT (x, t+ ∆t)) +

∆t

2cρ
(W (x, t) +W (x, t+ ∆t)

Now sort with respect to time

(2 · 1−O)
#‰

T (t+ ∆t) = (2 · 1 +O)
#‰

T (t) +
∆t

cρ
(

‰

W (t) + #‰w(t+ ∆t))

with B = (21−O)−1 we arrive at the formal solution

#‰

T (t+ ∆t) = B

[
(2I +O) +

∆t

cρ
(

‰

W (t) +
‰

W (t+ ∆t))

]
This lead to an tridiagonal matrix which can be solved
in O(n)

11.5 Spectral Methods

basis function are globally smooth (FE: locally)
Consider an PDE given by a Differential operator L e.g.

L =

(
∂

∂t
− ∂

∂x

)
:

Lu(x, t) = f(u(x, t))

u(0, t) = uB u(x, 0) = u1(x)

Expansion in terms of basis function φi

u(x, t) =

∞∑
i=1

ai(t)φi(x) ≈ uN (x) =

N∑
i=1

ai(t)φi(x)

Pick N (orthogonal) test function wj :

wj(x) =

{
φj(x), Galerkin

δ(x− xj), Collocation

and obtain the following eqautions

∫ 1

0

(Lu(x, t) + f(u(x, t)))wj(x) dxdt = 0, j = 1, . . . , N

Other possible orthgonal systems besides fourier

• Legendre [−1, 1]

• Chebychev [−1, 1]

• Laguerre [0,∞)

• Hermite (−∞,∞)

11.6 Finite Volume Method

TODO

20

