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Abstract

This is a short summary of the lecture Computational Statistical Physics given by Professor Hans J. Herrmann at ETH
Zurich in spring 2014. It strongly focuses around the expected exam questions and is hence not complete.

1 General

1.1 Questions of last semester

• Critical behavior of the Ising model

• M(RT )2 canonical Monte Carlo

• Detailed Balance

• Finite size scaling

1.2 Relevant questions

• Fluctuation-dissipation theorem for M

• Dynamic correlations and dynamic scaling

• Glauber and Kawasaki dynamics

• Creutz demons

• Binder cumulants

• First order transitions (Potts model)

• Swendsen-Wang cluster algorithm

• Verlet and leap frog schemes

• Verlet tables and linked cells

• Particle-mesh method

• Constraint method with Lagrange multipliers

• Rigid bodies, quaternions

• Nose-Hoover thermostat

• Event driven simulations

• Inelasticity and finite time singularity

2 Classical Statistical Mechanics

• many body system of N classical particles i

• n degrees of freedom p
(j)
i (discrete or continuous)

• Configuration X

X = {p(j)
i , i = 1, . . . , N, j = 1, . . . , n}

• time evolution described by Hamiltonian H through
Liouville equation

∂ρ

∂t
(X, t) = −{H, ρ}

with distribution of configurations ρ

• Thermal equilibirum defined by steady state Liou-
ville equation

∂ρ

∂t
= 0

• Thermal average over quantity Q

〈Q〉 =
1

Ω

∑
X

Q(X)ρ(X)

with phase space volume Ω

2.1 Ensembles

• Microcanonical: fix E, V,N

• Canonical: fix T, V,N

• Grandcanonical: fix T, V, µ

• Canonical pressure: fix T, p,N
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2.1.1 Microcanonical Ensemble

E(X) energy of configuration X is fixed and probability for
system to be in X is equal for all E:

peq(X) =
1

Zmc
δ(H(X)− E)

with partition function Zmc

Zmc =
∑
X

δ(H(X)− E) = Tr[δ(H(X)− E)]

2.1.2 Canonical Ensemble

Temperature T is fixed and probability to be in X is given
by the Boltzmann factor

peq =
1

ZT
exp

(
E(X)

kT

)
with partition function

ZT =
∑
X

e−
E(X)
kT

Thermal average of quantity Q

〈Q(T )〉 =
1

ZT

∑
X

Q(X)e−
E(X)
kT

2.2 Ising Model

Spins on a lattice, interacting via Hamiltonian

H = E = −J
N∑
〈i,j〉

σiσj −H
N∑
i=1

σi, σi = ±1, i = 1, . . . , N

2.2.1 Order parameter

Spontaneous magnetization

MS(T ) = lim
H→0

〈
1

N

N∑
i=1

σi

〉

Critical behavior with exponent β = 1/8(2D), β ≈
0.326(3D)

MS ∝ (T − Tc)β

2.2.2 Response functions

measure the sensitivity of a system w.r.t. external field or
temperature.
Susceptibility

χ(T ) =
∂M

∂H

∣∣∣∣
T,H=0

∝ |T − Tc|−γ

Specific heat

CV (T ) =
∂E

∂T

∣∣∣∣
H

∝ |T − Tc|−α

→ both diverge at Tc.

2.2.3 Fluctuation-dissipation theorem

Derivation for the susceptibility. Define

H0 = βJ

N∑
〈i,j〉

σiσj , β =
1

kT

We then have

χ(T ) =
∂ 〈M(T,H)〉

∂H

∣∣∣∣
H=0

=
∂

∂H

∑
X

∑N
i=1 σie

H0+βH
∑N
i=1 σi∑

X

eH0+βH
∑N
i=1 σi

︸ ︷︷ ︸
=ZT (H)

∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

=
β
∑
X

(∑N
i=1 σi

)2

eH0+βH
∑N
i=1 σi

ZT (H)

∣∣∣∣∣∣∣
H=0

−
β
(∑

X

∑N
i=1 σie

H0+βH
∑N
i=1 σi

)2

(ZT (H))2

∣∣∣∣∣∣∣
H=0

= β
[〈
M(T )2

〉
− 〈M(T )〉2

]
⇒ χ(T ) ≥ 0
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where in the last line we arrive at the expression for the
fluctuation of the magnetizability
Analogously for the specific heat:

CV = β2
[〈
E2
〉
− 〈E〉2

]

2.2.4 Correlation length

Correlation function

C(R) = 〈σ(0)σ(R)〉

• T 6= Tc, large R: C(R) ∝M2 + ae−
R
ξ where ξ is the

correlation length

• T = Tc, large R: C(R) ∝ R2−d−η , η = 1/4(0.05)

• correlation length diverges at Tc

ξ ∝ |T − Tc|−ν , ν = 1(0.63)

Exponent relations

α+ 2β + γ = 2, 2− α = dν, (2− η)ν = γ

• First relation: scaling

• Other relations: hyperscaling

• → only two exponents independent

• used for consistency check in numerical results

3 Monte Carlo Method

Ensemble average over phase space Λ with probability
measure dµ (normalization with partition function)

〈f〉 =

∫
Λ

f dµ = f t = lim
T→∞

1

T

∫ T

0

f(x(t)) dt (1)

• The normalizing factor of the measure is called par-
tition function

• From the ergodic hypothesis follows that all mi-
crostates are equiprobable

• The energy of configuration X is E(X)

• Probability (at thermal equilibrium) given by

peq =
1

ZT
e
−E(X)
kBT

with the partition function ZT =
∑
X e
−E(X)
kBT .

Discrete ensemble average

〈Q〉 =
∑
X

Q(X) peq︸︷︷︸
Boltzmann

(X) (2)

Problem of Sampling
It is inefficient to calculate ensemble averages in an
equally distributed system. Hand-waving argument:
Peak of energy increase as

√
Ld, but system size increases

as Ld, therefore relative peak width decreases with in-
creasing system size.

3.0.5 Markov chains

Start in configuration X and propose new configuration Y
with probability T (X → Y ).

Properties for proposing a new state:

• Ergodicity: reach any possible configuration after
finite number of steps (A state is ergodic if it is ape-
riodic and positively recurrent)

• Normalization:
∑
Y

T (X → Y ) = 1

• Reversibility: T (X → Y ) = T (Y → X)

→ not every new configuration is also accepted.

Accept a new configuration with some acceptance proba-
bility to control dynamics (e.g. temperature dependence),
therefore total Markov chain acceptance probability
(Overall probability of a configuration making it through
both steps.)

W (X → Y ) = T (X → Y )︸ ︷︷ ︸
Transition Prob

· A(X → Y )︸ ︷︷ ︸
Acceptance Prob

(3)

(Can also be interpreted as conditional probability of ac-
ceptance for given y)

Master equation

dp(X, t)

dt
=
∑
Y

p(Y )W (Y → X)−
∑
X

p(X)W (X → Y )

(4)

where p(x, t) is the probability to find x in time t

Properties of W (x→ Y ):

• Ergodicity: ∀X,Y W (X → Y ) > 0

• Normalization:
∑
Y

W (X → Y ) = 1

• Homogeneity:
∑
Y

pst(Y )W (Y → X) = pst(X)
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3.0.6 Detailed Balance

The stationary states of the Markov chains,

dp(X, t)

dt
= 0 (5)

should model Boltzmann equilibrium distribution:

pst(X) = peq(X) =
1

ZT
e
−E(X)
kBT ∀X (6)

⇒
∑
Y

peq(Y )W (Y → X) =
∑
Y

Peq(X)W (X → Y ) (7)

One finds the detailed balance condition

peq(X)W (X → Y ) = peq(Y )W (Y → X) ∀X,Y (8)

such that the steady state is the thermal equilibrium.

Since W (X → Y ) = T (X → Y ) · A(X → Y ) and
T (X → Y ) = T (Y → X) one can rewrite the detailed
balance condition to

peq(X)A(X → Y ) = peq(Y )A(Y → X) ∀X,Y (9)

3.0.7 MR2T2

Basic Idea: Carry out importance sampling through a
Markov Chain. Acceptance probability is

A(X → Y ) = min

(
1,
peq(Y )

peq(X)

)
(10)

= min

(
1,

1
Z e
−E(Y )

kT

1
Z e
−E(X)

kT

)
(11)

= min
(

1, e−
(E(Y )−E(X))

kT

)
(12)

(13)

A(X → Y ) = min
(

1, e
∆
kBT

)
Always accept transitions to lower energy. Thermal equi-
librium is enforced by detailed balance.

3.0.8 Glauber dynamics

Acceptance probability is

A(X → Y ) =
e−

∆E
kT

1− e−∆E
kT

(14)

Glauber dynamics are superior at low temperatures due to
different acceptance formulation.

3.1 Ising model

Consider a discrete collection of N binary variables(spins)
σi ∈ {−1,+1} Hamiltonian

H = E = −
∑
i,j

Jijσiσj −Hiσi (15)

Coupling Jij = J is typically just for nearest neighbors and
Hi usually homogeneous external field.

Example: 1D ferromagnetic Ising: E =
∑
i σiσi+1.

3.1.1 Monte-Carlo-Algorithm

1. Choose randomly site i having spin state σi

2. Calculate

∆E = E(Y )− E(X) =
∑

<i,j>n.n.

2Jσiσj

= 2Jσihi

hi =
∑

n.n ofi

σj

3. If ∆E < 0 flip spin

4. If ∆E ≥ 0 flip spin with probability e−
∆E
kT

Sweep: Group of N steps.

Magnetization Let M be the magenetization, χ magnetic
susceptibility and H the magnetic field strength. Then

M = χH (16)

M(T ) =
1

N
lim
H→0

N∑
i=1

σi (17)

∝
{
|Tc − T |β T < Tc

0 T > Tc
(18)

where β = 1
8 (2D), 0.326(3D). We have a singularity at the

critical temperature( or a maximum if the system is finite
).

Magnetic susceptibility

M = χH (19)

χ ∝ (T − Tc)−γ (20)

Energy and heat capacity Energy increases with T (S-
like curve), heat capacity has peak at Tc

3.2 MCM Implementation Details

3.2.1 Look-up tables

Consider Ising model on a square lattice → four next
neighbors

hi

4∑
j nn of i

σj ∈ {0,±2,±4}

→∆E

J
= 2σihi ∈ {0,±4,±8}

• for ∆E ≤ we accept with probability 1

• → need to store only two values

P (k) = e−4βJk, k =
1

2
σihi ∈ {1, 2}
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3.2.2 Boundary conditions

• Open: no neighbors → needs exception for the
boundaries

• Fixed: neighbor with fixed spins→ imposes a field

• Periodic: define index vectors

• Helical: index system as a one dimensional

string: For k = i+ j(L− 1) we have the neighbors

k ± 1, k ± L
→ physically corresponds to applying a velocity (sort
of)

3.2.3 Multi-spin coding

• technique to increase speed and reduce memory space
for Boolean variables

• computer word size is 64 bits

• consider Ising model on simple cubic lattice

– six nearest neighbors

– energy can have 7 different values (0, . . . , 6)

– → 3 bits per site

Define ith site in a word (i = 1, . . . , 21), hence we 21 sites
per word:

Ni = (0, . . . , 0, 1, 0, . . . , 0, 0, 0︸ ︷︷ ︸
site 1

)

Use bitweise XOR, since energy changes only if neighboring
spins are different.
Store neighboring sites in different words Nj and calculate
energy of 21 sites simultaneously by

E = NXORN1 + . . .+NXORN6

• Extract last 3 bits of E with mask 7 =
(0, . . . , 0, 1, 1, 1) through E&7

• changer word cw 1 if spin is flipped, 0 if spin is not
flipped( XORing with cw flips every spin )

Code

cw=0; // Nothing to be changed
for ( i =1; i <=21; i++) //21 s i t e s in one word
{

z=ran f ( ) ; // s e l e c t random spin
i f ( z<P(E&7)) // lookup energy and t e s t
cw=(cw | 1 ) ; // s e t f i r s t b i t o f c}w
cw=ror (cw , 3 ) ; // s h i f t by 3 to next s i t e
E=ror (E , 3 ) ; // s h i f t by 3 to next s i t e

}
cw=ror (cw , 1 ) ; // s h i f t unused b i t to f r o n t
N=(Nˆcw ) ; // Apply cw : sp in f l i p

3.3 Sampling

• each spin flips generates new configuration very sim-
ilar to the previous one

• → samples in our Markov chain are very correlated

• for averages statisitically uncorrelated configurations
are needed

• also decorrelation from initial configuration is needed

3.3.1 Dynamic interpreation of MC

Time evolution of a quantity A

〈A(t)〉 =
∑
X

p(X, t)A(X) =
∑
X

p(X, t0)A(X(t))

with

dp(X, t)

dt
=
∑
Y

p(Y )W (Y → X)−
∑
Y

p(X)W (X → Y )

Suppose configuration at t0 is not at equilibrium. Then de-
fine the non-linear correlation function or relaxation
function

Φnl
A =

〈A(t)〉 − 〈A(∞)〉
〈A(t0)〉 − 〈A(∞)〉

where A(∞) denotes the equilibrium value. Function is
normalized such that it

• starts at value 1 at t = t0

• decays to value 0 at t =∞

3.3.2 Non-linear correlation time

τnl
A ≡

∫ ∞
0

Φnl
A (t) dt

Connection to non-linear correlation function

Φnl
A = e

− t

τnl
A

Describes relaxation towards equilibrium

Critical slowing down

τnl
A ∝ |T − Tc|z

nl
A
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• → correlation time diverges

• → at criticality one never reaches equilibrium

• znl
A is the non-linear dynamical exponent

• depends on the quantity under study, dynamics and
dimension

3.3.3 Linear correlation function

ΦAB(t) =
〈A(t0)B(t)〉 − 〈A〉 〈B〉
〈AB〉 − 〈A〉 〈B〉

defined for two quantities A and B in equilibrium and
with

〈A(t0)B(t)〉 =
∑
X

p(X, t0)A(X(t0))B(X(t))

For A = B we have auto correlation, e.g. spin-spin
correlation

Φσ(t) =

〈
σ(t0)σ(t)− 〈σ(t0)〉2

〉
〈σ(t0)2〉 − 〈σ(t0)〉2

3.3.4 Linear correlation time

τAB ≡
∫ ∞

0

ΦAB(t) dt

connection to linear correlation function

ΦAB(t) = e
− t
τAB

Describes relaxation in equilibrium.

Critical slowing down

τAB ∝ |T − Tc|−zAB

where zAB is the dynamical critical exponent. For ki-
netic Ising model zσ = 2.16(2.09)

Conjectured relations to non-linear exponents

zσ − znl
σ = β, zE − znl

E = 1− α

3.3.5 Critical dynamics in finite sizes

At Tc we have

L = ξ(T ) ∝ |T − Tc|−ν

and hence

τAB ∝ |T − Tc|−zAB ∝ L
zAB
ν

• number of discarded samples grows like power law of
system size

• finite size → finite correlation time

• → solution to critical slowing down

3.3.6 Decorrelated configurations

• First to reach equilibrium throw away

n0 = cτnl(T ) configurations

• Then take only every neth configuration with

ne = cτ(T )

• At criticality: τ make no sense any more, → replace
by system size

• At Tc use:

n0 = cL
znl

ν , ne = cL
z
ν , c ≈ 3

3.4 Finite size effects

Correlation length ξ cannot be larger than system size L,
therefore maximum instead of a singularity:

The correlation length gets cut at the size L of the system
Use two points p1, p2 bounding the critical region, then

L = ξ(p1) ∝ (p1 − pc)−ν

p1 − p2 ≈ 2(p1 − P − c)

assuming pc lies approximately in the center of the region.

It follows for the size of the critical region:

(p1 − p2) = L−
1
ν (21)

Conclusion: If L → ∞, the critical region vanishes, which
is impossible with a finite PC.
Hence we need to extrapolate the behavior

Close to pc (extrapolation not scaling):

peff(L) = pc

(
1− aL− 1

ν

)
(22)

3.5 Finite size scaling

Consider the second moment χ of the cluster size distribu-
tion as a function of p and L.
→ can be reduced to a one variable function.
Self-similarity of percolating clusters near critical point

χ (p, L) = L
γ
νNχ

[
(p− pc)L

1
ν

]
(23)

where Nχ is the scaling function.

Plotting χ against p for several L-values, leads to differences
at the critical value(peak height)

At p = pc the scaling function approaches a constant and

χmax = L
γ
ν (24)
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⇒

If we find an expression for the size of the peak depending
only on L as well as introducing new parameters, based on
previous one, a data collapse happens:
Only one parameter is necessary to describe the data.

Size dependence of the Order parameter
Fraction of sites in the spanning cluster at pc:

s∞ ∝ Ldf

⇒ PLd = s∞ ∝ Ldf

3.5.1 Fractal dimension in percolation

Fraction of sites in spanning cluster (order parameter):

P (p) = (p− pc)β (25)

consider P as function of p and L, then finite size scaling

P (p, L) = L−
β
νNP

[
(p− pc)L

1
ν

]
(26)

At p = pc order parameter

P = L−
β
ν (27)

and number of sites of the spanning cluster

s∞ = M ∝ Ldf (28)

depends on the system size.

We know

M = PLd = L−
β
ν+d !

=L
df (29)

df = d− β

ν
(30)

3.6 Heat bath method

Start with Glauber dynamics spin-flip probability

Ai ≡
e−2βσihi

1 + e−2βσihi
, hi =

∑
j=nn

σj

Implementation using random number z:

σi(t+ 1) = −σi(t) sign(Ai − z)

Probability for (no) spin flip

pflip = Ai(σi) =

{
pi, for σi = −1

1− pi, for σi = +1
, pi =

e2βhi

1 + e2βhi

pno flip = 1−Ai(σi) =

{
1− pi, for σi = −1

pi, for σi = +1

Now we have probability pi for conserving a spin σi = +1
and probability pi to flip a spin with σi = −1 such that the
following total probability occur for positive and negative
spins:

σi = +1 with pi, σi = −1 with 1− pi

For the heat bath method just choose site i and set spin
according to above probabilities.

3.7 Binary mixtures

• Two species A and B with given concentrations on
the lattice sites

• EAA energy of A-A-bond

• EBB energy of B-B-bond

• EAB energy of A-B-bond

• Set EAA = EBB and EAB = 1

• → Ising model with J = 1 and constant M

Kawasaki dynamics

1. Choose random A-B-bomd

2. Calculate ∆E for A-A → B-A

3. Flip according to Metropolis or Glauber
7



4 Microcanonical Monte Carlo

4.1 Creutz algorithm

Deterministic algorithm. Softens energy conservation re-
striction:
Introduce small energy reservoir Ed called demon which
can store a maximum energy Emax

1. choose randomly a site

2. calculate ∆E for spin flip

3. Accept flip if

Emax ≥ Ed −∆E ≥ 0 ⇔ Ed −∆E ∈ [0, Emax]

• algorithm is deterministic

• reversible, there exist no transients

• good for multi-spin coding and parallelisation

• obtain temperature T trough histogram P (Ed) of
the energies Ed of the demon

P (Ed) ∝ e−
Ed
kT

• should follow Boltzmann distribution

• demon corresponds to heat bath

4.2 Q2R

Case Emax = 0 of Creutz algorithm on square lattice.
Totalistic cellular automaton

σij(t+ 1) = f(xij)︸ ︷︷ ︸
changer word

⊕σij(T ), σij ∈ {1, 0}

f(x) =

{
1, if x = 2

0, if x 6= 2

Sum over next neighbors

xij = σi−1,j + σi+1,j + σi,j−1 + σi,j+1

Expression with logical functions

σ(t+ 1) = σ(t)⊕ ((σ1 ⊕ σ2) ∧ (σ3 ⊕ σ4) ∨ ((σ1 ⊕ σ3) ∧ (σ2 ⊕ σ4)))

• deterministic and reversible, but not ergodic

• Energy

E =
∑
〈i,j〉

σi ⊕ σj

is a conserved quantity

4.2.1 Implementation

Divide lattice in two sub-lattices σ and σ̂ and use multi-
spin coding to implement reversbile bitwise logical au-
tomaton

R =

{
σi(t+ 1) = f(σ̂j(t))j=nn(i) ⊕ σi(t)
σi(t+ 1) = f

(
f(σ̂k(t))j=nn(j) ⊕ σj(t)

)
σ̂i(t)

5 Binder cumulants

→ Method to obtain the critical Temperature, more ac-
curate than determining the maximum of χ at Tc

5.1 General definition: Cumulants

Cumulants of a random variable X are defined via the
cumulant-generating function g(t) which is the loga-
rithm of the moment-generating function. The cumu-
lants are given as coefficients κn in the seris expansion:

g(t) = log
〈
etX
〉

=
∑
n=1

κn
tn

n!

• First cumulant: expected value

• Second and third cumulant: second(variance) and
third central moment

• Higher cumulants: polynomial expression of the

moments, e.g. κ4 = µ4 − 3µ2
2

• In statistical physics: normalized with respect to
Gaussian fluctations

κ̃ = 1− µ4

3µ2
2

which for finite size L systems directly leads to the
definition of

5.2 Binder cumulants

UL ≡ 1−
〈
M4
〉
L

3 〈M2〉2L

〈
M4
〉
L

〈M2〉2L
=

L
4β
ν J
(

(T − Tc)L
1
ν

)
(
L

2β
ν J
(

(T − Tc)L
1
ν

))2 = JC

(
(Tc − T )L

1
ν

)
which becomes independent of L at Tc8



5.2.1 Above critical Temperature T > Tc

magnetization follows Gaussian distribution

PL =

√
Ld

πσL
e
−M2Ld

σL , σL = kT2χL

such that 〈
M4
〉
L

= 3
〈
M2
〉2
L
⇒ UL = 0

5.2.2 Below critical Temperatur T < Tc

magnetization follows superposition of two Gaussians

PL(M) =
1

2

√
Ld

πσL

[
e

(M−Ms)2Ld

σl + e
(M−Ms)2Ld

σl

]
such that 〈

M4
〉
L

=
〈
M2
〉2
L
⇒ UL =

2

3

5.3 Critical temperature

UL = 1−
〈
M4
〉
L

3 〈M2〉2L

L→∞−−−−→

{
0, for T > Tc
2
3 , for T < Tc

6 Corrections to Scaling

→ Scaling laws onyl hold at Tc

M(T ) = A(Tc − T )β +A1(Tc − T )β1 + · · ·
ξ(T ) = C(Tc − T )−ν + C1(Tc − T )−ν1 + · · ·

with non-integer subdominant exponents β1 > β and ν1 <
ν, as universal correction to scaling exponents, ob-
tained numerically as fit parameters

M(T, L) = L
β
ν JM

(
(Tc − T )L

1
ν

)
+ LxJ1

M

(
(Tc − T )L

1
ν

)
+ · · ·

where x = max

[
β1

ν
,
β

ν1
,
β

ν
− 1

]

7 First order transition

• For T < Tc Ising model has at H = 0 phase transi-
tion of first order

• → jump in magnetization of ∆M , entropy ∆S and

• → susceptibility and specific heat exhibit delta func-
tion behavior at transition latent heat ∆E

• we have hysteresis and for small systems, magnetiza-
tion jumps after ergodic time Te

7.1 Finite Size Scaling of first order tran-
sitions

Consider times much larger than Te. From the distribution
of the magnetization of two Gaussians one can derive

M(H) = χDLH +ML tanh(βHMLL
d)

χL(H) =
∂M

∂H
= χDL +

βM2
LL

d

cosh2(βHMLLd)

Maximum of susceptibility and width of the peak

χL(H = 0) ∼ Ld, ∆χL ∼ L−d

• finite size behavior: no critical points, no critical epx-
onents

• BUT signals of the delta function in numerics

• above behavior of maximum and width similar to
delta function

ADD SLIDE 95 PICTURE

7.2 Potts model

Generalization of the Ising model to more than two states

H = E = −J
∑
〈i,j〉

δσi,σj −H1

∑
i

δσ1,1 σi = 1, . . . , q

• q = 2 corresponds to Ising model

• q → 1 bond percolation due to Theorem of Kaste-
leyn and Fortuin

• application in surface science, opinion model, QCD
9



• prototype model for first order transition (in T)

• 2D: for q > 4 and in D > 2 for q > 2

7.3 Kasteleyn and Fortuin

Consider Potts model on arbitrary graph with bonds ν

E = J
∑
ν

εν , εν =

{
0, if endpoints are in same state

1, if endpoints are in different state

Define on bond ν0 operators of Contract C and Deletion
D.

Transformation of the partition function

Z =
∑
X

e−βE(X) =
∑
X

e−βJ
∑
ν εν =

∑
X

∏
e−βJεν

Consider bond ν0 with endpoints i and j

Z =
∑
X

e−βJεν0
∏
ν 6=ν0

e−βJεν

=
∑

X:σi=σj

∏
ν 6=ν0

e−βJεν

︸ ︷︷ ︸
i,j equal states⇒ εν=0

+ e−βJ
∑

X:σi 6=σj

∏
ν 6=ν0

e−βJεν

︸ ︷︷ ︸
i,j different states⇒ εν=1

• first term: contains all configurations where states at
endpoint i and j are equal.

• → partition function ZC after application of the con-
traction operator C

• second term: contains all configurations where states
at endpont i and j are different, factor out e−βJεν0 =
e−βJ

• partition function ZD after application of deletion
operator D on bond ν0 such that bond ν0 contribu-
tion is missing.

• ZD still contains contributions for arbitrary i and j,
especially the case σi = σj which is already included
in ZC .

• → subtract those cases for the second term ZD − ZC

Z = ZC + e−βJ(ZD − ZC) = (1− e−βJ)ZC + e−βJZD

≡ pZC + (1− p)ZD, p ≡ 1− e−βJ

Partition function splitting for bond ν0

Z = pZCν0 + (1− p)ZDν0

Partition function subsequent splitting for bond ν1

Z = p2ZCν0Cν1 + p(1− p)ZCν0Dν1 + (1− p)pZDν0Cν1 + (1− p)2ZDν0Dν1

• Repeat for all edges until only disconnected sites re-
main

• → graph is reduced to set of separated points

• → correspond to connected, contracted, (occu-
pied) bonds (clusters)

• each can be in q different states, hence q#of clusters

possibile states.

Z =
∑
C
q#of clusterspc(1− p)d =

〈
q#of clusters

〉
with configuration of bond percolation C, c and d number
of contracted or deleted bond, respectively.
Within the percolation representation c can be also inter-
preted as the number of occupied bonds and d as the
number of empty bonds

7.4 Coniglio-Klein Clusters

• consider unit of all connected sites that are in same
state

• remove bonde between them with probability

p ≡ 1− e−βJ

8 Cluster algorithms

• Single flip algorithms are slow for T < Tc

• probability to flip group of n spins simultaneously

even smaller: (e−2βJ)n
s�1−−−→ 0

Probability that cluster C is in state σ0

p(C, σ0) = pcC (1− p)dC
∑
C\C

q#pc(1− p)d

is independent of σ0

Detailed Balance for change σ0 → σ1

p(C, σ0)W ((C, σ0)→ (C, σ1)) = p(C, σ1)W ((C, σ1)→ (C, σ1))
10



is fullfilled since by above independence of σi p(C, σ0) =
p(C, σ1)

Glauber

W ((C, σ0)→ (C, σ1)) =
p(C, σ1)

p(C, σ0) + p(C, σ1)
=

1

2

→ choose new state always with probability 1
2 .

Metropolis

W ((C, σ0)→ (C, σ1)) = min

[
p(C, σ1)

p(C, σ0)
, 1

]
= 1

8.1 Swendsen-Wang algorithm

• occupy bond with probability p = 1 − e−βJ if states
are eqial, otherwise leave empty

• identify clusters with Hoshen-Kopelman algorithm

• Flip each cluster with probability 1/2 for Ising or
choose always a new state for q > 2

• critical slowing down significantly reduced z ≈
0.3(0.55)

8.2 Wolff algorithm

• choose a site randomly

• if neighboring site is in the same state add to cluster
with p = 1−−βJ

• Repeat until every site on the boundary of the cluster
has been checked exactly once

• choose new state for the cluster (with probabiltiy one)

8.3 General formalism

after D. Kandel, E. Domany and A. Brandt (1989)
partition function

Z =
∑
X

∑
G

(X,G) =
∑
X

p(X), e.g. p(X) = e−βE(X)

Detailed Balance

p(X,G)W ((X,G)→ (X ′, G)) = p(X ′, G)W ((X ′, G)→ (X,G))

Glauber

W ((X,G)→ (X ′G)) =
p(X ′, G)

p(X,G) + p(X ′, G)

Metropolis

W ((X,G)→ (X ′G)) = min

[
p(X ′, G)

p(X,G)
, 1

]
Algorithm simplification

p(X,G) = ∆(X,G)V (g), ∆(X,G) =

{
1

0

8.4 Improved estimators

From one configuration one can already get an average over
many states because one can flip any subset of clusters.
magnetization

〈Mi〉 =

〈
1

2
(σi − σi)

〉
= 0

correlation function

〈σiσj〉 =

{
1, if i, j in the same cluster

0, otherwise

Susceptibility

χ = β
(〈
M2
〉
− 〈M〉2

)
,
〈
M2
〉

=
1

N2

∑
i,j

〈σiσj〉 =
1

N2

〈 ∑
Cluster

σ2
i

〉

9 Histogram methods

Obtain results for a new temperature T ∗ using simulation
results one already has for temperature T

Time average of quantity Q at temperature T

Q(T ) =
1

ZT

∑
E

Q(E)pT (E)

ZT =
∑
E

pT (E), pT (E) = g(E)e−
E
kT

with density of states g(E).
Quantity at new temperature T ∗

Q(T ∗) =
1

ZT∗

∑
E

Q(E)pT∗(E)

Express new probabilities

pT∗(E) = g(E)e−
E
kT∗ = pT (E) e

− E

kT∗ E
kT︸ ︷︷ ︸

≡fT,T∗ (E)

to obtain

Q(T ∗) =

∑
E Q(E)pT (E)fT,T∗(E)∑

E pT (E)fT,T∗(E)

11



9.1 Broad histogram method

• problem of above method: values for Q(E) were sam-
pled close to the maximum of pT (E), very peaked for
large systems

• → Overlap of pT (E) and pT∗(E) very small

• → very few samples at the maximum of pT∗

• statistics become very bad for large |T − T ∗|

Markov process in energy space

• Nup number of all processes that increase the energy

E → E + ∆E

• Ndown number of processes that decrease the energy

E → E −∆E

• Detailed balance

g(E + ∆E)Ndown(E + ∆E) = g(E)Nup(E)

number of energy decreasing processes with E +
∆E → E equals number of energy increasing pro-
cesses with E → E + ∆E.

• Metropolis: Chosse new configuration for instance
by flipping randomly a spin E → E − ∆E accept if
E → E + ∆E accept with probability

Ndown(E + ∆E)

Nup(E)

Take logarithm of detailed balance and divide by ∆E. For
small ∆E

log g(E + ∆E)− log g(E) = logNup(E)− logNdown(E + ∆E)

⇒ ∂ log g(E)

∂E
=

1

∆E
log

Nup(E)

Ndown(E + ∆E)

1. Check for each site of a configuration if change of
state would increase or decrease energe and change
Nup and Ndown accordingly

2. Choose a site randomly and change state if energy is
decreased. If energy is increased change state with

probability Ndown/Nup

3. At each accumulate values for Nup, Ndown and Q(E)
and calculate

Q(T ) =

∑
E Q(E)g(E)e−

E
kT∑

E g(E)e−
E
kT

10 Real space renormalization

• power laws at criticality are a result of scale invari-
ance of the system

• → different properties of the system remain un-
changed in different length scale: e.g. distribution
of areas with aligned spins versus boiling water

• → scale invariance is basic idead of renormalization
group

• map from small scale system to large scale system
demanding invariance of the basic form of physical
description (for a likewise rescaled temperature/mag-
netic field )

• critical point becomes a fixed point in the descrip-
tion

Example: spin model an quadratic lattice

• we choose dimension d = 2 and scale factor l = 3

• → new spin state s̃j replace nine old states sj

Free energy

• free energy is extensive, thus proportional to the de-
grees of freedom of the system

• → free energy density must invariant under transfor-
mation:

F̃ (ε̃, H̃) = l−dF (ε,H), ε ≡ T − Tc

• near criticality for all thermodynamic quantities
hold homogeneous scaling laws:

F (ε,H) = ldF (lYT , lyHH)

where yT and yH are critical exponents related to the
classical ones

• By comparison with the first formula

⇒ ε̂ = lyT ε, Ĥ = lyHH

Correlation length

Described by critical exponent ξ ∼ |ε|−ν

Rescaling with l yields ε̂−ν ∼ ξ̂ =
ξ

l
and we get for the

temperature exponent

ε̂ =
ε

l−
1
ν

= l
1
ν ε

!
= lytε, yT =

1

ν

and similiarly for the magnetic field exponent.

Renormalization by decimation Remove every second
spin → l =

√
2

12



10.1 Renormalized Hamiltonian

11 Molecular Dynamics

generalized coordinates with α degrees of freedom
of particle i

qi = (q1
i , . . . , q

α
i ), pi = (p1

i , . . . , p
α
i )

N particles

Q = (q1, . . . ,qN ), P = (p1, . . . ,pN )

Hamiltonian and kinetic energy

H(P,Q) = K(P ) + V (Q), K(P ) =
∑
i

α∑
k=1

(pki )2

2mi

Expansion of potential

V (Q) =
∑
i

v1(qi) +
∑
i

∑
j>i

v2(qi, qj) +
∑
i

∑
j>i

∑
k>j

v3(qi, qj , qk) + · · ·

Three or more body interactions neglected and their effect
considered in effective two body interaction

veff
2 (qi, qj) = vattr(r) + vrep(r), r = |qi − qj |

11.1 Potentials

11.1.1 Hard core interaction

vrep(r) =

{
∞, r < σ ≈ 0.35nm

0, r ≥ σ

Problem: forces F = −∇V are delta function like

11.1.2 Elastic repulsion

ADD PIC PAGE 104

vrep(r) =

{
k
2 (R− r)2, r < R

0, r ≥ R
, R = R1 +R2

Repulsive part of elastic spring potential with spring con-
stant k, force grows linearly with increasing overlap. Finite
range unrealistic.

11.1.3 Soft core repulsion

vrep(r) = ε
(σ
r

)ν
• ν = 1 electrostatics and gravity, ν = 12 soft repulsion

• slowly decaying potentials problematic in numerics

11.1.4 square potentials

v(r) =


∞, r < σ1

∞, σ1 ≤ r < σ2

∞, r ≥ σ2

again infinite forces

11.1.5 Lenard Jones potential

vLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

11.2 Equations of motion

Hamiltonian equations of motion

q̇ki =
∂H
∂pki

, ṗki = − ∂H
∂qki

, k = 1, . . . , α, i = 1, . . . , N

Coupled Newtonian equations of motion

qi = xi, q̇i = vi

ẋi =vi =
pi
mi

ṗi =−∇iV (Q) = fi

miẍi = fi =
∑
j

fij

13



11.3 Conservation laws

• Energy conservation as long as K(P ) and V (Q)
do not explicitely depend on time

• Momentum conservation (if the system has no

walls) P =
∑
i

pi

• Angular momentum for spherical systems L =∑
i xi × pi

• Time reversal invariance

11.4 Contact time

• rmax turning point of a colliding particle

• → E = V maximal potential energy, no kinetic en-
ergy

• rmin maximum range of the potential

• → E = K maximal kinetic energy, for elastic poten-
tial: starting point σ, for potentials with attractive
part: minimum

• contact time for hard core potentials would be in-
stantly

Energy and velocity

E =
1

2
mṙ2 + V (r) = const ⇒ dr

dt
=

[
2

m
(E − V (r))

] 1
2

Contact time

tc = 2

∫ tc
2

0

= 2

∫ rmax

rmin

dt

dr
dr = 2

∫ rmax

rmin

[
2

m
(E − V (r))

]− 1
2

dr

11.5 Solving equations of motion

• Euler method

• Runge-Kutta method

• Predictor-Corrector method

• Verlet method

• Leap-frog method

11.6 Programming Tricks

→ most time consuming loop is calculattion of forces since
all pairs (∼ N2) of particles need to be considered

• For potentials with even powers: Instead of cal-
culating the square root, work with the square if pos-
sible:

rij =

√√√√ d∑
α=1

(xαi − xαj )2 → V (r) ∼ r2n ⇒ fi = f(r2(n−1))ri

• cut-off radius rc possible for some (short range) po-
tentials: exactly zero for larger distances. e.g rc =
2.5σ for LJ-Potenial

• for simple potentials Look-up tables are possible:
Divide intervall (0, r2

c ) in K pieces with points lk cre-
ate look-up table F (k):

lk =
k

K
r2
c , F (k) = f(

√
lk)

where the index must be calculated through

k =

⌊
S
∑
α

(xαi − xαj )(xαi − xαj )

⌋
+ 1, S =

K

r2
c

• Newton-Gregory Interpolation to decrease error
from discretization of the potential:

f(x) = F (k) + (k − zS)(F (k − 1)− F (k)), z =
∑
α

(xαi − xαj )2

12 Verlet method

Taylor expansion in time step ∆t ≈ tc/20

(x+ ∆t) = x(t) + ∆tv(t) +
1

2
∆t2v̇(t) + · · ·

(x−∆t) = x(t)−∆tv(t) +
1

2
∆t2v̇(t) + · · ·

and add equations

x(t+ ∆t) = 2x(t)− x(t−∆t) + ∆t2ẍi(t)

with forces ẍ from Newtonian equations of motion

ẍi =
1

mi

∑
j

fij , fij = −∇V (rij(t)), ∆t ≈ 1

10∫ rmax

tmin

[
2

m
(E − V (r))

]− 1
2

dr

and insert all in

xi(t+ ∆t) = 2xi(t)− xi(t−∆t) + ∆t2ẍi(t)

• needs to store two time steps t and t−∆t

• (Local) error is O(∆t4): third order algorithm

• exact time reversal
14



• velocities can be obtained through

v(t) =
x(t+ ∆t)− x(t−∆t)

2∆t

• Problem: last term O(∆0) is very small compared
to previous ones O(∆t2) → roundoff errors

• Improve systematically adding more orders

12.1 Leap-Frog method

Consider velocities at intermediate times

v(t+
1

2
∆t) = v(t− 1

2
∆t) + ∆ẍ(t)

x(t+ ∆t) = x(t) + ∆tv(t+
1

2
∆t)

Comparison Verlet Leap frog

Comparison Euler Leap frog
Leap frog:

v̇(t+ ∆t) =
f(x(t))

m

v(t+ ∆t) = v(t) + ∆t(̇t + ∆t)

x(t+ ∆t) = x(t) + ∆tv(t+ ∆t)

Euler

v̇(t+ ∆t) =
f(x(t))

m
x(t+ ∆t) = x(t) + ∆tv(t)

v(t+ ∆t) = v(t) + ∆v̇(t+ ∆t)

• No addition of O(∆t0) and O(∆t2) terms any more

• for larger ∆t we have larger energy fluctuations but
on average energy should be constant

• Precision given by√
〈E2〉 − 〈E〉2

12.2 Verlet tables

Avoids to query every O(N2) particle pairs in every step.

• Define a neighborhood with radius rl > rc around
each particle i

• store all the coordinates if the particles in this neigh-
borhood in a vector LIST with length N ·Nu, where
Nu is the average number of particles in the neigh-
bothood

• LIST is a one-dimensional vector which stores all
point neighborhoods sequentially

• a vector POINT[i] contains the index of the first
neighbor particle of particle i

• → particles in the neighborhood of i are:
LIST[POINT[i]],. . .,LIST[POINT[i+1]-1]

• Every n =
rl − 2rc
∆tvmax

time steps, Verlet table must be

renewed (n ≈ 10− 20) since otherwise particles be-
yond distance rl could reach rc

• Renewal requires still N2 operations

12.3 Linked cell method

• Place grid of size Md above system, s.t. each cell is
larger than 2rc

• all particles that can interact with particle i lie in the
shaded region

• → on average only necessary to test N ·3dN/Md par-
itcles reducing the loop by (M/3)3

• Store in vector FIRST with length Md for each cell
the index of the first particle

• No particle in cell j set FIRST[j]=0

• In vector LIST[i] with length N store for each par-
ticle i the index of the next particle in the same cell

• for last particle in a cell LIST[i]=0

• when particle flies from one cell to another, renew
FIRST and LIST locally
⇒ algorithm is O(N)
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Program to find all particles in cell i = 2

M[1]=FIRST [ i ] ;
i =2;
while (M[ i −1]!=0)

M[ j ]=LIST [M[ j −1 ] ] ;

13 Molecules

• atoms are bind together through the attractive part
of their potential

• → needs deep potentials and is hence computationally
expensive

• forces inside molecules at least one order of magni-
tude larger than between them

• assume covalent bonds do not break and keep bond
and angles fixed.

• → two possibilities

13.1 Lagrange multipliers

Consider the example of a water molecule with fixed bond
length. Atom i (i = 1, 2, 3) follows the equation:

miẍi = fi + gi

where fi are forces from other molecules and gi forces to
impose the contraints.

Contraint equation
bond length should be gevin by d12 and d23

χ12 = r2
12 − d2

12 = 0, rij = ‖rij‖
χ23 = r2

23 − d2
23 = 0, rij = xi − xj

yields contraint forces

gk =
1

2
λ12∇xkχ12 +

1

2
λ23∇xkχ23

with yet to be determined Lagrange multipliers λ12 and
λ23

⇒ g1 = λ12r12, g2 = λ23r23 − λ12r12, g3 = −λ23r23

Time stepping
Execute Verlet in two steps: Without constraint
forces:

x!
i(t+ ∆t) = 2xi − xi(t−∆t) + ∆t2

fi
mi

Correction with yet unknown constraint forces

xi(t+ ∆t) = x!
i(t+ ∆t) + ∆t2

gi
mi

Finally, insert gi

x1(t+ ∆t) = x!
1(t+ ∆t) + ∆t2

λ12

m1
r12(t)

x2(t+ ∆t) = x!
2(t+ ∆t) + ∆t2

λ23

m2
r23(t)−∆t2

λ12

m2
r12(t)

x3(t+ ∆t) = x!
3(t+ ∆t) + ∆t2

λ23

m3
r23(t)

Insert these expression into the constraint condition to
obtain λ12 and λ23

‖x1(t+ ∆t)− x2(t+ ∆t)‖2 = d2
12

‖x2(t+ ∆t)− x3(t+ ∆t)‖2 = d2
23

leading to a coupled system of quadratic equations[
x!

1(t+ ∆t)− x!
2 + ∆t2µ12r12(t)−∆t2

λ23

m2
r23(t)

]2

= d2
12[

x!
2(t+ ∆t)− x!

3 + ∆t2µ23r23(t)−∆t2
λ12

m2
r23(t)

]2

= d2
23

where µij =
(

1
mi

+ 1
mj

)
is the reduced mass.

Solve for λ12 and λ23 and use to calculate xi(t+ ∆t).

13.2 Rigid bodies

Consider rigid body of n points i of mass mi

Coordinates of the center of mass

Mxcm ≡
n∑
i=1

ximi, M ≡
n∑
i=1

mi

which follows the equation

M ẍcm =

n∑
i=1

fi ≡ fcm

Torque

T ≡
n∑
i=1

di × fi, di ≡ xi − xcm

13.2.1 Degrees of freedom

• 2D: ω always direct orthogonal to plane.

• → rotations can be described by scalar angle

• → three degrees of freedom (2 translational and 1
rotational)

• 3D: ω: three generalized coordinates (angles) neces-
sary

• → six degrees of freedom (3 translational and 1 ro-
tational)
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13.2.2 Two dimension

moment of inertia and torque

I =

∫ ∫
A

r2ρ(r) dA, T =

∫ ∫
A

ft(r)r dA

equation of motion for rotation

Iω = T

Time evolution of the angle φ using Verlet

φ(t+ ∆t) = 2φ(t)− φ(t−∆t) + ∆t2 T (t)︸︷︷︸ Iω̇
T (t) =

∑
j∈A

(
fyj (t) · dxj (t)− fxj (t) · dyj (t)

)
where dxj (t) denotes the x-component of the vector con-
necting the center of mass to mass element j Full time
evolution

x(t+ ∆t) = 2x(t)− x(t−∆t) + ∆t2M−1
∑
j∈A

fj(t)

φ(t+ ∆t) = 2φ(t)− φ(t−∆t) + ∆t2I−1T (t)

13.2.3 Three dimensions

Angular momentum

L ≡ midi × vi =

n∑
i=1

midi × (di × ω)

=

n∑
i=1

mi

(
di(di · ω)− d2

iω
)

= Iω

Equation of motion

L̇ = Iω̇ = T

such that I is not a scalar any more.

Tensor of intertia

I =
n∑
i=1

mi

(
dTi ⊗ di − d2

i I
)

where ⊗ denotes the dyadic product.

• eigenvectors span a body-fixed coordinate system
with origin in the center of mass

• transform from lab-fixed to body-fixed system with

eb = Ael where the transformation matrix is unfor-
tunatetly unknown and changes with time

Equations in body-frame

L̇ = Tl ⇒ L̇b + ωb × Lb = Iω̇b + ωb × Lb = Tb

leading to the following system of equation with separated
ω̇b
i

Iω̇b = Tb − ωb × Lb ⇔


ω̇bx =

T bx
Ixx

+
(
Iyy−Izz
Ixx

)
ωbyω

b
z

ω̇by =
T by
Ixx

+
(
Izz−Ixx
Iyy

)
ωbzω

b
x

ω̇bz =
T bz
Ixx

+
(
Ixx−Iyy
Izz

)
ωbxω

b
y

Strategy

1. Calculate torque in lab system and transform to body
system

Tl =

n∑
i=1

di × fi → Tb = ATl

2. evolve angular velocities in body frame

ωbx(t+ ∆t) = ωbx(t) + ∆t
T bx(t)

Ixx
+ ∆t

(
Iyy − Izz
Ixx

)
ωby(t)ωbz(t)

ωby(t+ ∆t) = ωby(t) + ∆t
T by (t)

Iyy
+ ∆t

(
Izz − Ixx
Iyy

)
ωbz(t)ω

b
x(t)

ωbz(t+ ∆t) = ωbz(t) + ∆t
T bz (t)

Izz︸ ︷︷ ︸
torque forces

+ ∆t

(
Ixx − Iyy

Izz

)
ωbx(t)ωby(t)︸ ︷︷ ︸

inertial forces∝ω2

3. transform back to lab frame

ωl(t+ ∆t) = ATωb(t+ ∆t)

13.2.4 Euler angles

Rotation in three dimensions described by three Euler
angles φ, θ and ψ.

1. rotate around z-axis by φ

2. rotate around x-axis by θ

3. rotate around new z-axis by ψ

A =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cosφ − sin δ 0
sinφ cosφ 0

0 0 1



Relation to angular velocties

φ̇ = −ωlx
sinφ cos θ

sin θ
+ ωly

cosφ cos θ

sin θ
+ ωlz

θ̇ = ωlx cos θ + ωly sinφ

ψ̇ = ωlx
sinφ

sin θ
− ωly

cosφ

sin θ

→ equations become singular for θ = 0 and θ = π!
17



13.3 Quaternions

Q = (q0, q1, q2, q3), with q2
0 + q2

1 + q2
2 + q2

3 = 1

Definition from Euler angles

q0 ≡ cos
1

2
θ cos

1

2
(φ+ ψ)

q1 ≡ sin
1

2
θ cos

1

2
(φ− ψ)

q2 ≡ sin
1

2
θ sin

1

2
(φ− ψ)

q3 ≡ cos
1

2
θ sin

1

2
(φ+ ψ)

Transformation matrix

A =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3


First order linear equations

q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
ωbx
ωby
ωbz


Back transformation to Euler angles

φ = arctan

(
2(q0q1 − q2q3)

1− 2(q2
1 + q2

2)

)
θ = arctan (2(q0q2 − q1q3)

ψ = arctan

(
2(q0q3 + q1q2)

1− 2(q2
2 + q2

3)

)
Strategy

• Calculate torque T (t) in body-frame

• Use to obtain ωb(t + ∆t) and map to quaternions
qi(t+ ∆t)

• also possible: insert torque directly into e.o.m. of the
quaternions an obtain second order differential equa-
tion

• → avoid to calculate ω

13.4 Long-range potentials

• potentials that decay slower than r−d

• e.g. electrostatics, gravity, dipoles

• no cut-off rc possible

• → would be equivalent in the electrostatic case to in-
troduction of a charged sphere of radius rc around
considered particle

• methods

– Ewald method

– particle-mesh methods

– reaction field method

13.5 Ewald summation

• consider periodic boundaries and periodic images

• length of original system L, number of original parti-
cles N

• sum over all images

V =
1

2

′∑
n

N∑
i,j

zizj |rij + n|−1, rij = ri − rj ,

where
∑′

denotes the exclusion of n = 0 for i = j to
avoid self-interaction and n = (nxL, nyL, nzL) with
ni ∈ Z connects the center of the system to the center
of the images.

• → conditionally convergent(order-dependent) and
converges very slowly

13.6 Ewald method

• each charge be screened by Gaussian charge dis-
tribution of opposite sign and equal magnitude

ρi(r) =
ziκ

3

π
3
2

e−κ
2r2

• κ describes smearing out of the charge

• extra screening charge must again be cancelled by
charge density of opposite sign

V =
1

2

∑
ij

( ′∑
n

zizj
erfc(κ|rij + n|)
|rij + n|

+
1

πL3

∑
k 6=0

zizj
4π2

k2
e−

k2

4κ2 cos(k · rij)

− κ√
π

∑
i

z2
i
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13.7 Reaction field method

• usually weakly charged, weak interaction, more or less
neutral, no clustering

• mostly for dipole-dipole interaction

• define sphere(cavity) Ni of radius rc

• calculate forces inside exactly

• treat rest as a dieletric continuum of dielectric con-
stant εS (model parameter)

(Reaction) Field of cavity Ni generated by the dipole
moments µjof the particles inside the cavity:

Ei =
2(εS − 1)

2εS + 1

1

r3
c

g
∑
j∈Ni

µj

Total force on particle

Fi =
∑
j∈Ni

Fij + Ei × µi

where Fij are local forces from neighbors.
Weight function to avoid jump in the forces each time a
particle enter or leaves cavity

g(rj) =


1, for rj < ri
rc−rj
rc−rt for rt ≤ rj ≤ rc
0, for rc < rj

with rt ≈ 0.95rc
Modified Coulomb potential due to reaction field
method

Uc =
1

4πε0

∑
i>j

qiqj

 1

rij −
B0r2

ij

2R3
c


infinite sum is replaced by final one plus reaction field

14 Particle-Mesh algorithm

• Put fine mesh on top of system (M ≈ N)

• Distribute charges onto mesh points

• Calculate the electrostatic potential by solving Pois-
son equation on the mesh using FFT

• Calculate force on each particle by numerically differ-
entiating the potential and interpolating back from
the mesh to the particle position

• Nearest Grid Point (NGP): put particle on near-
est grid point and also evaluate it force ate nearest
point

• Cloud In Cell (CIC): Assign the charge to the 2d

nearest grid points and also interpolate from these 2d

grid points.

• method goes like O(N logN) due to FFT

Criteria for a good PM scheme

• Erros should vanish at large particle distances

• momentum conservation: Fij = −Fij

• charges on mesh and interpolated forces should

Weaknesses of PM algorithm

• very inhomogeneous distribution of masses

• strong correlations, like bound states

• complex geometries

• → use P 3M , AP 3M , treed codes or multipole expan-
sion

Distribution for a charge q at position (x, y) to the
four corners of cell (i, j) for CIC

ρij = q(xi+1 − x)(yi+1 − y)

ρi+1j = q(x− xi)(yi+1 − y)

ρij+1 = q(xi+1 − x)(y − yi+1)

ρi+1j+1 = q(x− xi)(y − yi+1)

Solve Poisson in Fourier space

φ(r) =

∫
ρ(r′)g(r− r′) ddr′

with Green’s function for 3D gravity g(r) =
G

‖r‖
Fourier transform

φ̂(k) = ρ̂(k)ĝ(k)

with ĝ(k) =
G

k2
or on finite lattice of size L3

ĝ(k) ∝ 1

sin2(kx
L
2 ) + sin2(ky

L
2 ) + sin2(kz

L
2 )

Force at grid points

F(rij) = −∇φ(rij)

Force at particle position is obtained through interpola-
tion over a neighborhood of grid points for each component:

F (k)(r) =
∑
j

W (r− rj)F
(k)(rj)
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14.1 P 3M algorithm

P 3M =Particle-Particle-Particle-Mesh
→ split force into short and long range part:

F = Fs + Fl

• Fl: small and smooth at short distances, calculated
using PM algorithm

• Fs: is calculated exactly by solving Newton’s equa-
tion

• → field is no longer independent of particle any more

14.2 AP 3M algorithm

• Adaptive P 3M

• for homogeneous mass distribution Fs ∼ O(N) and
Fl ∼ O(N logN)

• masses cluster under gravity and then Fs ∼ O(N2)

• → refine mesh in regions where density of masses is
higher

14.3 Tree codes

• treat far-away clusters as quasi-particles

• they form hierarchical structures (clusters of clusters)

• bookeping of structures by trees (e.g. wuad trees)

• also usable in linked cell algorithm when one has par-
ticles i.e. cells of very different size

14.4 Multipole expansion

• FMM Fast Multipole Method

• calculate force from high order multipole expansion

• implies high computational effort to reach sufficient
accuracy ∼ (N logN)

• used in combination with tree codes

15 Canonical Ensemble Molecular
Dynamics

Temperature measurement
Equipartition theorem〈

p
(α)
i

∂H
∂p

(α)
i

〉
=

〈
q

(α)
i

∂H
∂q

(α)
i

〉
= kT

such that for one particle

3kT =

〈
pi
∂H
∂pi

〉
=

〈∑
α

pαi
2p

(α)
i

2mi

〉
= 2

1

2mi

〈
p2
i

〉
= 2Ekin,i

Instantaneous temperature T

T ≡ 2

k(3N − 3)

N∑
i=1

p2
i

2mi

where 3 degrees of freedom are subtracted to exclude the
overall translation of the whole system.

15.1 Velocity rescaling

Simulate a given fixed temperature T

• Each time step rescale all velocities by a factor α:
vi → αvi

• → measured temperature scales as T → α2T

• in order to stay at temperatur T we must use

α =

√
T

T

• main problem: one changes physics and in particu-
lar time

• soften problem using relaxation time tT

α =

√
q +

∆t

tT

(
T

T
− 1

)

• still does not obay Maxwell-Boltzmann → only good
to initialize a configuration at given temperature

15.2 Constraint method

Add a friction term to the equation of motion

ṗ = fi − ξpi, pi = miẋi

• friction with both signs possible

• system becomes dissipative

• can be interpreted as Langrange multiplier

Berendsen et al define

ξ = γ

(
q − T

T

)

15.3 Stochastic method

• combine molecular MD with Monte Carlo

• very n time steps select randomly one particle
and give new momentum according to Maxwell-
Boltzmann distribution:

P (p) =
1

(πkT )3/2
e−
−(p−p0)2

kT
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• adjustable model n where κ is the thermal conductiv-
ity

n−1 ∝ κ

κρ1/3N2/3

• for n to small we have pure Monte Carlo and lose
the real time scale,e.g. long time tail of the velocity
correlation

• for n too large coupling to the heat bath is too weak,
equilibration is slow and we work rather microcanon-
ically

15.4 Nose-Hoover thermostat

New degree of freedom s
which describes the heat bath (can transfer heat from an
to the system)

V(s) = (3N + 1)kT log s, K(s) =
1

2
Qṡ2

where Q can be interpreted as thermal inertia, control-
ling the energy flow between system and heat bath.

Coupling to particle motion by changing the time scale

dt′ = sdt :

v′i = dxit
′ =

dxi
dt

dt

dt′
=

vi
s

p′i =
dK

dv′i
=

dK

dvi

dv

dv′
= spi

⇒ p′i = mis
2v′i

New Hamiltonian

H =

N∑
i=1

p′2i
2mis2

+
1

2
Qṡ2 + V(x1, . . . ,xN ) + V(s)

Define ps ≡ Qṡ , then Hamilton equations in virtual

time give:

dxi
dt′

=
∂H
∂p′i

=
p′i
mis2

ds

dt′
=
∂H
∂ps

=
ps
Q

dp′i
dt′

= − ∂H
∂xi

= −∇xiV(x1, . . . ,xN ) = fi

dps
dt′

= −∂H
∂s

=
1

s

(
N∑
i=1

p2
i

mis2
− (3N + 1)kT

)
→ p′i = mis

2ẋi

dp′i
dt′

= 2misṡẋi +mis
2ẍi

Equations of motion in virtual time t′

mis
2ẍi = fi − 2miṡsẋi, Qs̈ =

N∑
i=1

misẋ
2
i −

1

s
(3N + 1)kT

→ entire system is conservative and its ensemble micro-
canonical.

Transformation to real time using ∆t =
∆t′

s
, p′i = spi

we have the Hamilton equations

dxi
dt

= s
dxi
dt′

=
p′i
mis

=
pi
mi

ds

dt
= s

ds

dt′
= s

ps
Q

dpi
dt

= s
d

dt′
p′i
s

=
dp′i
dt′
− 1

s

ds

dt′
p′i = fi −

1

s

ds

dt
pi

dps
dt

= s
dps
dt′

=

N∑
i=1

p2
i

mi
− (3N + 1)kT

Equations of motion in real space

ẍi =
fi
mi
− ξẋi,

1

2
Qξ̇ =

1

2

N∑
i=1

miẋ
2
i −

1

2
(3N + 1)kT

with ξ ≡ ṡ

s
. The log s is needed such that the total energy,

obtained from integration is
dlog s

dt
= ξ

Choice of Q

• must be chosen empirically

• too large Q leads to slow equilibration,

• for Q→∞ microcanonical MD is recovered

• Q too small leads to spurious temperature fluctua-
tions SLIDE 111

• → check that the wisth of temperature distribution
follows

∆T =

√
2

Nd
T

PARTIONFUNCTION → ADD NEW SLIDES 133
through 135

• only method with a single friction parameter that
gives the correct canonical distribution

• Hoover thermostate satisfies Liouville equation, i.e.
density of states is conserved in phase space

16 Constant pressure ensemble

Generalized equipartition theorem〈
pi
∂H
∂pi

〉
=

〈
qi
∂H
∂qi

〉
= 3kT, H = K(p) + V(x)
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Split potential forces into forces from walls and forces
from particles

1

3

〈
N∑
i=1

xi · ∇xiV(xi)

〉
= NkT

1

3

〈
N∑
i=1

xi ·
(
f ext
i + fpart

i

)〉
= −NkT

1

3

〈
N∑
i=1

xi · f ext
i

〉
+

1

3

〈
N∑
i=1

xif
part
i

〉
︸ ︷︷ ︸

≡w virial

= −NkT

Then

1

3

〈
N∑
i=1

xi · f ext
i

〉
= −1

3

∫
Γ

px dA

= −1

3
p

∫
V

∇ · c dV = −pV

Instantaneous pressure

PV ≡= NkT + 〈w〉

→ keep pressure p fixed by changing the V using a piston
of mass W . ADD SLIDE 121

16.1 Coordinate rescaling (Anderson)

Volume change

V = 1− αt
∆t

tp
(p− P)

• αT isothermal compressibility

• tp relaxation time for the pressure

• → corresponds to rescaling of length x→ V 1/3x

16.2 Berendsen thermostat

New Hamiltonian

H =

N∑
i=1

1

2
mix

2
i +

1

2
WV̇ 2︸ ︷︷ ︸

Ekin of Volume change

+V (x1, . . . ,xN ) + pV

where the new variable V is a volume change controlled
by a piston of mass W which defines a canonical momen-
tum

pV = WV̇

Equations of motion

ẍi =
fi
mi
− V̇

3V
ẋi, W V̇ =

1

3v

N∑
i=1

miẋ
2
i +

1

3V

n∑
i=1

fixi − p

16.3 Parinello-Rahman barostat

→ also change the shape of the box described three vectors
a,b and c and thus having a volume

V = a · (b× c) = det(H), H = {a,b, c}

Position of particle i in this box

ri) = Hsi = xia + yib + zic, xi, yi, zi ∈ (0, 1)

Distance between particles i and j

r2
ij = sTijGsij , G = HTH

Hamiltonian

H =
1

2

∑
i

miṡi
TGṡi +

∑
ij

V(rij) + Tr ḢTḢ + pV

equations of motion

mis̈i = H−1 −miG
−1(Ġṡi), W Ḧ = pV (H−1)T

16.4 NPT ensemble

ADD (eventually) SLIDE 127f SLIDE 127f

17 Event driven Molecular Dy-
namics

• flow of the program is not determined by loops but
by events

• for riged bodies of finite volume one would normally
want to describes by a hard core potential in clas-
sicla MF

• event driven simulations: collisions are considere as
instantaneous events and particles do not interact in
between

• → no forces calculated

• → only binary collisions considered

• → ballistic tracectories between collision

• calculate time tc between two collision

• obtain velocities of the two particles after the colli-
sions from the velocities of ther particles from a look-
up table

17.1 Collision event (2d)

ADD SLIDE 5 Consider collision of to rigid disks i and j,
where the collision angle θ is between rij = ri − rj and

relative velocity vbvij = vi − vj
22



17.2 Collision time tc

1. Let t0 be the time at which the last collision occured
and set r0

ij = rij(t0).

2. Calculate for each pair of particles (i, j) the time tij
when the next collision will occur.

|rij(tij)| = Ri +Rj ⇒ |rij(t0) + vijtij | = Ri +Rj

⇒v2
ijt

2
ij + 2(r0

ijvij) + (r0
ij)

2 − (Ri +Rj)
2 = 0

3. the time tc when the next collision in the system
occurs is the minimum over all pairs (i, j)

tc = min
ij

(tij)

17.3 Propagation step

• due to global minimization not easlily parallelizable
or vectorizable

• once tc is determined, particles are moved by

r!
i = ri + vitc, φ!

i = φi + ωitc ∀i

• then collision between the pair (i∗, j∗) occurs

• one can also add simple accelerations like gravity

• knowon position and angle of particle i at a time t∗

since which it had no collision, one can determine po-
sition and angle at later time as

ri(t) = ri(t
∗) + vi(t

∗ − t) +
1

2
gez(t

∗ − t)2, φi(t) = φi(t
∗) + ωi(t

∗ − t)

17.4 Lubachevsky tricks

• simple loop over all pairs to determine tc is O(N2)

• using lists of events and binary stacks: O(N logN)

• Create list of events (length N) storing for each
particle last event and next event

• → keep track of time of event and partner particle
involved

• from list one get for each particle i time t(i) for the
next collision involving thus particle

• → we can find in O(N) tc = min
i

(t(i))

Implementation Organize t(i) in increasing order im-
plicitely in a stack

• vector part[m] points to particle i which is at posi-
tion m in the stack

• vecotr pos[i] gives position m of particle i in the
stack

• this constitutes implicit ordering og the collision
times t(i), where m = 1 points to the smallest time

• part[1] is particle with minimal collisio time: tc =
t(part[1])

• after event the time t(part[1]) must be updated and the
list reordered

• store additionally to position and velocity for each
particle the last event and next event in 6 arrays
of dimension N

• Last event is needed as particles are only updated
after being involved in an event

• After event for both particles all six entries (event
times, new partners, positions and velocities) have to
be updated

• additionally part[m] has to be reordered

Complexity

• Straightforward calculation of the new collision times
would be of order O(N) when checking for both par-
ticles with all other particles

• Collision lists for each particle or division into sectors
(cells) reduce the order to O(1) per event

• sector boundaries have to be treated similar as ob-
stacles, i.e. when particles cross sector boundaries a
collision event happens

• Re-ordering the heap after each event is of order
O(logN) when using, e.g. binary trees for sorting

• typically: number of events proportional to N → or-
der of method O(N logN).

Tournament sorting INSERT SLIDE 17
Depth of the tree (O(log2N)) determines maximum num-
ber of comparisons for re-ordering.

17.5 Collision with perfect slip

• in tangential direction

• no momentum transferred

• → angular velocity irrelevant

Momentum conservation

vafter
i = vbefore

i +
∆pn
mi

, vafter
j = vbefore

j +
∆pn
mj

where ∆pn = ∆p ·n denotes the normal component of the
momentum difference.

Energy conservation

1

2
mi(v

before
i )2 1

2
mj(v

before
j )2 =

1

2
mi(v

after
i )2 1

2
mj(v

after
j )2

The momentum change must be parallel to normal di-
rection n and therefore

∆pn = −2meff

[
(vbefore
i − vbefore

j )n
]
n, meff ≡

mimj

mi +mj
23



for collision between particles i and j

vafter
i = vbefore

i −
[
(vbefore
i − vbefore

j )n
]
n

vafter
j = vbefore

i +
[
(vbefore
i − vbefore

j )n
]
n

for mi = mj we have

vafter
i = vbefore

i − unijn

vafter
j = vbefore

j − unijn

→ make look-up table

17.6 Collision with rotation

Equation of motion for rotation

I
dωi
dt

= r× fij = mr× dvi
dt

Consider collision between spheres i and j having the same
radius R, moment of inertia I and mass m

I(ω′i − ωi) = −Rm(v′i − vi)× n

I(ω′j − ωj) = Rm(v′j − vj)× n

v′i + v′j = vi + vj

⇒ ω′i − ωi = ω′j − ωj =
Rm

I
(v′i − vi)× n

17.7 Collision with general slip

Condition for the relative velocity u between the particles
at their contact point

unij = (uijn)n

utij = uij × n = [(vi − vj)−R(ωi + ωj)]× n

General slip condition

ut
′

ij = etu
t
ij , |et| = 1, et =

{
1, perfect slip

0, no slip

v′i = vi − unij −
(1− et)utij

2(1 + q)
v′j = vj − unij −

(1− et)utij
2(1 + q)

ω′i = ωi −
(1− et)utij × n

2R(1 + q−1)
ω′j = ωj −

(1− et)utij × n

2R(1 + q−1)

where
meffR2

Ieff
, make a look-up table

17.8 Collision without slip

Use conservation of momentum, energy

E =
1

2

2∑
i=1

miv
2
i +

1

2

2∑
i=1

Iiω
2
i = const, J =

2∑
i=1

mi(ri × vi) =

2∑
i=1

Iiωi

momentum transfer

∆p = −2meff

[
(vijn)n +

I

I +meffR2
(vijs)s

]

17.9 Inelastic collision

• most real collisions are inelastic

• energy dissipated through vibrations, plastic defor-
mation, heat production

• dissipation quantified through material dependent
restitution coefficient r which is fraction of not
dissipated energy after a collision

• r = 1 for elastic collision, r = 0 perfect plasticity

Measurement of restitution coefficient
Let particle fall from height hinitial on a plate of same ma-
terial and measuring rebounce height hfinal

r = rn =
Eafter

Ebefore
=

hfinal

hinitial
=

(
vafter
n

vbefore
n

)2

Normal and tangential coefficients

en =
√
rn =

vafter
n

vbefore
n

, et =
√
rt =

vafter
t

vbefore
t

Energy conservation condition replaced by

(vafter
j − vafter

i ) · n = −en(vbefore
j − vbefore

i ) · n
examples for en (steel:0.92, aluminium:0.8, plastic: 0.6)

Inelastic normal collision
normal component of relative velocity u between particles
at their contact point

unij = (uijn)n = [(vi − vj)n] · n
dissipation through normal coefficient of restitution en

un
′

ij = enunij

ADD DETAILS SLIDE 37 Perfect slip

∆pn = −meff(1 + en)
[
(vbefore
i − vbefore

j ) · n
]
n

General slip

v′i = vi −
1 + en

2
unij −

(1− et)utij
2(1 + q)

v′j = vj +
1 + en

2
unij +

(1− et)utij
2(1 + q)

ω′i = ωi −
(1− et)utij × n

2R(1 + q−1)
ω′j = ωj −

(1− et)utij × n

2R(1 + q−1)

where
meffR2

Ieff
, make a look-up table

17.10 Finite time singularity

If an inelastic sphere jumps on a plate it will perform in a
finite time ttot an infinity of collisions.

ttot =

∞∑
j=1

tj = 2

√
2hinitial

g

∞∑
j=1

√
rj = 2

√
2hinitial

g

(
1

1−
√
r
− 1

)
(1 + t0)

Effect occurs for three particles if r < 7− 4
√

3

Minimum number of particles for which if r ≈ 1

nmin ∼ −
log(1− r)

1− r24


