Computational Statistical Physics

Pascal Debus *

ETH Zurich, Spring 2014

Abstract

This is a short summary of the lecture *Computational Statistical Physics* given by Professor Hans J. Herrmann at ETH Zurich in spring 2014. It strongly focuses around the expected exam questions and is hence not complete.

1 General

1.1 Questions of last semester

- Critical behavior of the Ising model
- $M(RT)^2$ canonical Monte Carlo
- Detailed Balance
- Finite size scaling

1.2 Relevant questions

- Fluctuation-dissipation theorem for M
- Dynamic correlations and dynamic scaling
- Glauber and Kawasaki dynamics
- Creutz demons
- Binder cumulants
- First order transitions (Potts model)
- Swendsen-Wang cluster algorithm
- Verlet and leap frog schemes
- Verlet tables and linked cells
- Particle-mesh method
- Constraint method with Lagrange multipliers
- Rigid bodies, quaternions
- Nose-Hoover thermostat
- Event driven simulations
- Inelasticity and finite time singularity

*pdebus@student.ethz.ch

2 Classical Statistical Mechanics

- many body system of N classical particles i
- *n* degrees of freedom $p_i^{(j)}$ (discrete or continuous)
- Configuration X

$$X = \{p_i^{(j)}, i = 1, \dots, N, j = 1, \dots, n\}$$

• time evolution described by Hamiltonian *H* through Liouville equation

$$\frac{\partial \rho}{\partial t}(X,t) = -\{H,\rho\}$$

with distribution of configurations ρ

• **Thermal equilibirum** defined by steady state Liouville equation

$$\frac{\partial \rho}{\partial t} = 0$$

• Thermal average over quantity Q

$$\langle Q \rangle = \frac{1}{\Omega} \sum_X Q(X) \rho(X)$$

with phase space volume Ω

2.1 Ensembles

- Microcanonical: fix E, V, N
- Canonical: fix T, V, N
- Grandcanonical: fix T, V, μ
- Canonical pressure: fix T, p, N

2.1.1 Microcanonical Ensemble

E(X) energy of configuration X is *fixed* and probability for system to be in X is equal for all E:

$$p_{\rm eq}(X) = \frac{1}{Z_{\rm mc}} \delta(H(X) - E)$$

with partition function $Z_{\rm mc}$

$$Z_{\rm mc} = \sum_{X} \delta(H(X) - E) = \operatorname{Tr}[\delta(H(X) - E)]$$

2.1.2 Canonical Ensemble

Temperature T is fixed and probability to be in X is given by the **Boltzmann factor**

$$p_{\rm eq} = \frac{1}{Z_T} \exp\left(\frac{E(X)}{kT}\right)$$

with partition function

$$Z_T = \sum_X e^{-\frac{E(X)}{kT}}$$

Thermal average of quantity Q

$$\langle Q(T) \rangle = \frac{1}{Z_T} \sum_X Q(X) e^{-\frac{E(X)}{kT}}$$

2.2 Ising Model

Spins on a lattice, interacting via Hamiltonian

$$\mathcal{H} = E = -J \sum_{\langle i,j \rangle}^{N} \sigma_i \sigma_j - H \sum_{i=1}^{N} \sigma_i, \quad \sigma_i = \pm 1, \ i = 1, \dots, N$$

2.2.1 Order parameter

Spontaneous magnetization

$$M_S(T) = \lim_{H \to 0} \left\langle \frac{1}{N} \sum_{i=1}^N \sigma_i \right\rangle$$

Critical behavior with exponent $\beta = 1/8(2D), \beta \approx 0.326(3D)$

$$M_S \propto (T - T_c)^{\beta}$$

2.2.2 Response functions

measure the sensitivity of a system w.r.t. external field or temperature.

Susceptibility

$$\left| \chi(T) = \frac{\partial M}{\partial H} \right|_{T,H=0} \propto |T - T_c|^{-\gamma}$$

Specific heat

$$C_V(T) = \left. \frac{\partial E}{\partial T} \right|_H \propto |T - T_c|^{-\alpha}$$

 \rightarrow both diverge at T_c .

2.2.3 Fluctuation-dissipation theorem

Derivation for the susceptibility. Define

$$\mathcal{H}_0 = \beta J \sum_{\langle i,j \rangle}^N \sigma_i \sigma_j, \quad \beta = \frac{1}{kT}$$

We then have

$$\begin{split} \chi(T) &= \left. \frac{\partial \left\langle M(T,H) \right\rangle}{\partial H} \right|_{H=0} = \left. \frac{\partial}{\partial H} \frac{\sum_{X} \sum_{i=1}^{N} \sigma_{i} e^{\mathcal{H}_{0} + \beta H \sum_{i=1}^{N} \sigma_{i}}}{\sum_{X} e^{\mathcal{H}_{0} + \beta H \sum_{i=1}^{N} \sigma_{i}}} \right|_{=Z_{T}(H)} \\ &= \left. \frac{\beta \sum_{X} \left(\sum_{i=1}^{N} \sigma_{i} \right)^{2} e^{\mathcal{H}_{0} + \beta H \sum_{i=1}^{N} \sigma_{i}}}{Z_{T}(H)} \right|_{H=0} \\ &- \left. \frac{\beta \left(\sum_{X} \sum_{i=1}^{N} \sigma_{i} e^{\mathcal{H}_{0} + \beta H \sum_{i=1}^{N} \sigma_{i}} \right)^{2}}{(Z_{T}(H))^{2}} \right|_{H=0} \\ &= \beta \left[\left\langle M(T)^{2} \right\rangle - \left\langle M(T) \right\rangle^{2} \right] \quad \Rightarrow \quad \chi(T) \ge 0 \end{split}$$

H =

where in the last line we arrive at the expression for the **fluctuation of the magnetizability** Analogously for the **specific heat**:

$$C_V = \beta^2 \left[\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right]$$

2.2.4 Correlation length

Correlation function

$$C(R) = \langle \sigma(0)\sigma(R) \rangle$$

- $T \neq T_c$, large R: $C(R) \propto M^2 + ae^{-\frac{R}{\xi}}$ where ξ is the correlation length
- $T = T_c$, large R: $C(R) \propto R^{2-d-\eta}$, $\eta = 1/4(0.05)$
- $\bullet\,$ correlation length diverges at T_c

$$\xi \propto |T - T_c|^{-\nu}$$
, $\nu = 1(0.63)$

Exponent relations

 $\alpha + 2\beta + \gamma = 2, \quad 2 - \alpha = d\nu, \quad (2 - \eta)\nu = \gamma$

- First relation: scaling
- Other relations: hyperscaling
- \rightarrow only two exponents independent
- used for consistency check in numerical results

3 Monte Carlo Method

Ensemble average over phase space Λ with probability measure $d\mu$ (normalization with partition function)

$$\langle f \rangle = \int_{\Lambda} f \, \mathrm{d}\mu = \overline{f}_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x(t)) \, \mathrm{d}t \qquad (1)$$

- The normalizing factor of the measure is called **partition function**
- From the ergodic hypothesis follows that all microstates are **equiprobable**
- The energy of configuration X is E(X)

• Probability (at thermal equilibrium) given by

$$p_{eq} = \frac{1}{Z_T} e^{-\frac{E(X)}{k_B T}}$$

with the partition function $Z_T = \sum_X e^{-\frac{E(X)}{k_B T}}$.

Discrete ensemble average

$$\langle Q \rangle = \sum_{X} Q(X) \underbrace{p_{\text{eq}}}_{\text{Boltzmann}} (X)$$
 (2)

Problem of Sampling

It is inefficient to calculate ensemble averages in an equally distributed system. Hand-waving argument: Peak of energy increase as $\sqrt{L^d}$, but system size increases as L^d , therefore relative peak width decreases with increasing system size.

3.0.5 Markov chains

Start in configuration X and propose new configuration Y with probability $T(X \to Y)$.

Properties for proposing a new state:

- **Ergodicity**: reach any possible configuration after finite number of steps (A state is *ergodic* if it is aperiodic and positively recurrent)
- Normalization: $\sum_{Y} T(X \to Y) = 1$
- Reversibility: $T(X \to Y) = T(Y \to X)$

 \rightarrow not every new configuration is also **accepted**.

Accept a new configuration with some acceptance probability to control dynamics (e.g. temperature dependence), therefore **total Markov chain acceptance probability** (Overall probability of a configuration making it through both steps.)

$$W(X \to Y) = \underbrace{T(X \to Y)}_{\text{Transition Prob}} \cdot \underbrace{A(X \to Y)}_{\text{Acceptance Prob}}$$
(3)

(Can also be interpreted as conditional probability of acceptance for given y)

Master equation

$$\frac{\mathrm{d}p(X,t)}{\mathrm{d}t} = \sum_{Y} p(Y)W(Y \to X) - \sum_{X} p(X)W(X \to Y)$$
(4)

where p(x,t) is the probability to find x in time t Properties of $W(x \to Y)$:

- Ergodicity: $\forall X, Y \quad W(X \to Y) > 0$
- Normalization: $\sum_{Y} W(X \to Y) = 1$
- Homogeneity: $\sum_{Y} p_{st}(Y)W(Y \to X) = p_{st}(X)$

3.0.6 Detailed Balance

The stationary states of the Markov chains,

$$\frac{\mathrm{d}p(X,t)}{\mathrm{d}t} = 0 \tag{5}$$

should model Boltzmann equilibrium distribution:

$$p_{\rm st}(X) = p_{\rm eq}(X) = \frac{1}{Z_T} e^{-\frac{E(X)}{k_B T}} \quad \forall X \tag{6}$$

$$\Rightarrow \sum_{Y} p_{eq}(Y)W(Y \to X) = \sum_{Y} P_{eq}(X)W(X \to Y) \quad (7)$$

One finds the **detailed balance condition**

$$p_{\rm eq}(X)W(X \to Y) = p_{\rm eq}(Y)W(Y \to X) \quad \forall X, Y$$
(8)

such that the steady state is the thermal equilibrium.

Since $W(X \to Y) = T(X \to Y) \cdot A(X \to Y)$ and $T(X \to Y) = T(Y \to X)$ one can rewrite the detailed balance condition to

$$p_{\rm eq}(X)A(X \to Y) = p_{\rm eq}(Y)A(Y \to X) \quad \forall X, Y \qquad (9)$$

$3.0.7 \quad MR^2T^2$

Basic Idea: Carry out importance sampling through a Markov Chain. Acceptance probability is

$$A(X \to Y) = \min\left(1, \frac{p_{\rm eq}(Y)}{p_{\rm eq}(X)}\right) \tag{10}$$

$$= \min\left(1, \frac{\frac{1}{Z}e^{-\frac{E(Y)}{kT}}}{\frac{1}{Z}e^{-\frac{E(X)}{kT}}}\right) \tag{11}$$

$$= \min\left(1, e^{-\frac{(E(Y) - E(X))}{kT}}\right) \tag{12}$$

(13)

$$A(X \to Y) = \min\left(1, e^{\frac{\Delta}{k_B T}}\right)$$

Always accept transitions to lower energy. Thermal equilibrium is enforced by detailed balance.

3.0.8 Glauber dynamics

Acceptance probability is

$$A(X \to Y) = \frac{e^{-\frac{\Delta E}{kT}}}{1 - e^{-\frac{\Delta E}{kT}}}$$
(14)

Glauber dynamics are superior at low temperatures due to different acceptance formulation.

3.1 Ising model

Consider a discrete collection of N binary variables (spins) $\sigma_i \in \{-1, +1\}$ Hamiltonian

$$\mathcal{H} = E = -\sum_{i,j} J_{ij}\sigma_i\sigma_j - H_i\sigma_i \tag{15}$$

Coupling $J_{ij} = J$ is typically just for nearest neighbors and H_i usually homogeneous external field.

Example: 1D ferromagnetic Ising: $E = \sum_{i} \sigma_i \sigma_{i+1}$.

3.1.1 Monte-Carlo-Algorithm

- 1. Choose randomly site i having spin state σ_i
- 2. Calculate

$$\begin{split} \Delta E &= E(Y) - E(X) = \sum_{ \text{n.n.}} 2 J \sigma_i \sigma_j \\ &= 2 J \sigma_i h_i \\ &= \sum_{\text{n.n of}i} \sigma_j \end{split}$$

3. If $\Delta E < 0$ flip spin

 h_i

4. If $\Delta E \ge 0$ flip spin with probability $e^{-\frac{\Delta E}{kT}}$

Sweep: Group of N steps.

Magnetization Let M be the magnetization, χ magnetic susceptibility and H the magnetic field strength. Then

$$M = \chi H \tag{16}$$

$$M(T) = \frac{1}{N} \lim_{H \to 0} \sum_{i=1}^{N} \sigma_i \tag{17}$$

$$\propto \begin{cases} |T_c - T|^{\beta} & T < T_c \\ 0 & T > T_c \end{cases}$$
(18)

where $\beta = \frac{1}{8}(2D)$, 0.326(3D). We have a singularity at the critical temperature(or a maximum if the system is finite).

Magnetic susceptibility

$$M = \chi H \tag{19}$$

$$\chi \propto (T - T_c)^{-\gamma} \tag{20}$$

Energy and heat capacity Energy increases with T (S-like curve), heat capacity has peak at T_c

3.2 MCM Implementation Details

3.2.1 Look-up tables

Consider Ising model on a square lattice \rightarrow four next neighbors

$$h_i \sum_{j \text{ nn of } i}^4 \sigma_j \in \{0, \pm 2, \pm 4\}$$
$$\rightarrow \frac{\Delta E}{J} = 2\sigma_i h_i \in \{0, \pm 4, \pm 8\}$$

- for $\Delta E \leq$ we accept with probability 1
- $\bullet~\rightarrow$ need to store only two values

$$P(k) = e^{-4\beta Jk}, \quad k = \frac{1}{2}\sigma_i h_i \in \{1, 2\}$$

3.2.2 Boundary conditions

- **Open**: no neighbors \rightarrow needs exception for the boundaries
- **Fixed**: neighbor with fixed spins \rightarrow imposes a field
- Periodic: define index vectors
- Helical: index system as a one dimensional string: For k = i + j(L-1) we have the neighbors $k \pm 1, k \pm L$

 \rightarrow physically corresponds to applying a velocity (sort of)

3.2.3 Multi-spin coding

- technique to increase speed and reduce memory space for Boolean variables
- computer word size is 64 bits
- consider Ising model on simple cubic lattice
 - six nearest neighbors
 - energy can have 7 different values $(0, \ldots, 6)$
 - \rightarrow 3 bits per site

Define *i*th site in a word (i = 1, ..., 21), hence we 21 sites per word:

$$N_i = (0, \dots, 0, 1, 0, \dots, \underbrace{0, 0, 0}_{\text{site 1}})$$

Use bitweise XOR, since energy changes only if neighboring spins are different.

Store neighboring sites in *different words* N_j and calculate energy of 21 sites simultaneously by

$$E = N X O R N_1 + \ldots + N X O R N_6$$

- Extract last 3 bits of E with mask 7 = $(0, \ldots, 0, 1, 1, 1)$ through E&7
- changer word cw 1 if spin is flipped, 0 if spin is not flipped(XORing with cw flips every spin)

Code

cw=0;	//Nothing to be changed
for (i=1; i <=21; i++)	//21 sites in one word
{	
z = ranf();	//select random spin
if(z < P(E&7))	//lookup energy and test
$cw = (cw \mid 1);$	$//set first bit of c \} w$
cw=ror(cw,3);	//shift by 3 to next site
E=ror(E,3);	//shift by 3 to next site
}	
cw=ror(cw,1);	//shift unused bit to from
$N=(N^{cw});$	//Apply cw: spin flip

3.3 Sampling

- each spin flips generates new configuration *very similar* to the previous one
- $\bullet \ \rightarrow {\rm samples} \ {\rm in} \ {\rm our} \ {\rm Markov} \ {\rm chain} \ {\rm are} \ {\rm very} \ {\rm correlated}$
- for averages statisitically uncorrelated configurations are needed
- also decorrelation from initial configuration is needed

3.3.1 Dynamic interpretation of MC

Time evolution of a quantity A

$$\langle A(t) \rangle = \sum_{X} p(X,t)A(X) = \sum_{X} p(X,t_0)A(X(t))$$

with

$$\frac{\mathrm{d}p(X,t)}{\mathrm{d}t} = \sum_{Y} p(Y)W(Y \to X) - \sum_{Y} p(X)W(X \to Y)$$

Suppose configuration at t_0 is not at equilibrium. Then define the non-linear correlation function or relaxation function

$$\Phi_A^{\rm nl} = \frac{\langle A(t) \rangle - \langle A(\infty) \rangle}{\langle A(t_0) \rangle - \langle A(\infty) \rangle}$$

where $A(\infty)$ denotes the equilibrium value. Function is normalized such that it

- starts at value 1 at $t = t_0$
- decays to value 0 at $t = \infty$

3.3.2 Non-linear correlation time

$$\tau_A^{\rm nl} \equiv \int_0^\infty \Phi_A^{\rm nl}(t) \,\mathrm{d}t$$

Connection to non-linear correlation function

$$\Phi_A^{\rm nl} = e^{-\frac{t}{\tau_A^{\rm nl}}}$$

Describes relaxation towards equilibrium

Critical slowing down

 $\tau_A^{\rm nl} \propto |T - T_c|^{z_A^{\rm nl}}$

t

- \rightarrow correlation time diverges
- \rightarrow at criticality one never reaches equilibrium
- z_A^{nl} is the non-linear dynamical exponent
- depends on the quantity under study, dynamics and dimension

3.3.3 Linear correlation function

$$\Phi_{AB}(t) = \frac{\langle A(t_0)B(t) \rangle - \langle A \rangle \langle B \rangle}{\langle AB \rangle - \langle A \rangle \langle B \rangle}$$

defined for two quantities A and B in equilibrium and with

$$\langle A(t_0)B(t)\rangle = \sum_X p(X,t_0)A(X(t_0))B(X(t))$$

For A = B we have **auto correlation**, e.g. **spin-spin** correlation

$\Phi(t) =$	$\left\langle \sigma(t_0)\sigma(t) - \left\langle \sigma(t_0) \right\rangle^2 \right\rangle$
$\Psi_{\sigma}(\iota) =$	$\langle \sigma(t_0)^2 \rangle - \langle \sigma(t_0) \rangle^2$

3.3.4 Linear correlation time

$$\tau_{AB} \equiv \int_0^\infty \Phi_{AB}(t) \,\mathrm{d}t$$

connection to linear correlation function

$$\Phi_{AB}(t) = e^{-\frac{t}{\tau_{AB}}}$$

Describes relaxation in equilibrium.

Critical slowing down

$$\tau_{AB} \propto |T - T_c|^{-z_{AB}}$$

where z_{AB} is the **dynamical critical exponent**. For kinetic Ising model $z_{\sigma} = 2.16(2.09)$

Conjectured relations to non-linear exponents

$$z_{\sigma} - z_{\sigma}^{\mathrm{nl}} = \beta, \quad z_E - z_E^{\mathrm{nl}} = 1 - \alpha$$

3.3.5 Critical dynamics in finite sizes

At T_c we have

$$L = \xi(T) \propto |T - T_c|^{-\nu}$$

and hence

$$\tau_{AB} \propto |T - T_c|^{-z_{AB}} \propto L^{\frac{z_{AB}}{\nu}}$$

- number of discarded samples grows like power law of system size
- finite size \rightarrow finite correlation time
- \rightarrow solution to critical slowing down

3.3.6 Decorrelated configurations

- First to **reach equilibrium** throw away $n_0 = c\tau^{nl}(T)$ configurations
- Then take only every n_e th configuration with $n_e = c\tau(T)$
- At criticality: τ make no sense any more, \rightarrow replace by system size
- At T_c use:

$$n_0 = cL^{\frac{z^{\rm nl}}{\nu}}, \quad n_e = cL^{\frac{z}{\nu}}, \quad c \approx 3$$

3.4 Finite size effects

Correlation length ξ cannot be larger than system size L, therefore maximum instead of a singularity:

The correlation length gets cut at the size L of the system Use two points p_1, p_2 bounding the critical region, then

$$L = \xi(p_1) \propto (p_1 - p_c)^{-\nu}$$

$$p_1 - p_2 \approx 2(p_1 - P - c)$$

assuming p_c lies approximately in the center of the region.

It follows for the size of the critical region:

$$(p_1 - p_2) = L^{-\frac{1}{\nu}} \tag{21}$$

Conclusion: If $L \to \infty$, the critical region vanishes, which is impossible with a finite PC.

Hence we need to extrapolate the behavior

Close to p_c (extrapolation not scaling):

$$p_{\text{eff}}(L) = p_c \left(1 - aL^{-\frac{1}{\nu}}\right)$$
(22)

3.5 Finite size scaling

Consider the second moment χ of the cluster size distribution as a function of p and L.

 \rightarrow can be reduced to a one variable function.

Self-similarity of percolating clusters near critical point

$$\chi(p,L) = L^{\frac{\gamma}{\nu}} \mathcal{N}_{\chi} \left[(p-p_c) L^{\frac{1}{\nu}} \right]$$
(23)

where \mathcal{N}_{χ} is the scaling function.

Plotting χ against p for several L-values, leads to differences at the critical value(peak height)

At $p = p_c$ the scaling function approaches a constant and

$$\chi_{\rm max} = L^{\frac{\gamma}{\nu}} \tag{24}$$

If we find an expression for the size of the peak depending only on L as well as introducing new parameters, based on previous one, a **data collapse** happens:

Only one parameter is necessary to describe the data.

Size dependence of the Order parameter

Fraction of sites in the spanning cluster at p_c :

$$s_{\infty} \propto L^{d_f}$$
$$\Rightarrow PL^d = s_{\infty} \propto L^{d_f}$$

3.5.1 Fractal dimension in percolation

Fraction of sites in spanning cluster (order parameter):

$$P(p) = (p - p_c)^{\beta} \tag{25}$$

consider P as function of p and L, then finite size scaling

$$P(p,L) = L^{-\frac{\beta}{\nu}} \mathcal{N}_P\left[(p-p_c)L^{\frac{1}{\nu}}\right]$$
(26)

At $p = p_c$ order parameter

$$P = L^{-\frac{\beta}{\nu}} \tag{27}$$

and number of sites of the spanning cluster

$$s_{\infty} = M \propto L^{a_f} \tag{28}$$

depends on the system size.

We know

$$M = PL^d = L^{-\frac{\beta}{\nu} + d} \underline{}^{\perp}L^{d_f}$$
⁽²⁹⁾

$$d_f = d - \frac{\beta}{\nu} \tag{30}$$

3.6 Heat bath method

Start with **Glauber dynamics** spin-flip probability

$$A_i \equiv \frac{e^{-2\beta\sigma_i h_i}}{1 + e^{-2\beta\sigma_i h_i}}, \quad h_i = \sum_{j=nn} \sigma_j$$

Implementation using random number z:

$$\sigma_i(t+1) = -\sigma_i(t)\operatorname{sign}(A_i - z)$$

Probability for (no) spin flip

$$p_{\text{flip}} = A_i(\sigma_i) = \begin{cases} p_i, & \text{for } \sigma_i = -1\\ 1 - p_i, & \text{for } \sigma_i = +1 \end{cases}, \quad p_i = \frac{e^{2\beta h_i}}{1 + e^{2\beta h_i}}$$
$$p_{\text{no flip}} = 1 - A_i(\sigma_i) = \begin{cases} 1 - p_i, & \text{for } \sigma_i = -1\\ p_i, & \text{for } \sigma_i = +1 \end{cases}$$

Now we have probability p_i for conserving a spin $\sigma_i = +1$ and probability p_i to flip a spin with $\sigma_i = -1$ such that the following total probability occur for positive and negative spins:

 $\sigma_i = +1$ with p_i , $\sigma_i = -1$ with $1 - p_i$

For the heat bath method just choose site i and set spin according to above probabilities.

3.7 Binary mixtures

- Two species A and B with given concentrations on the lattice sites
- E_{AA} energy of A-A-bond
- E_{BB} energy of *B*-*B*-bond
- E_{AB} energy of A-B-bond
- Set $E_{AA} = E_{BB}$ and $E_{AB} = 1$
- \rightarrow Ising model with J = 1 and constant M

Kawasaki dynamics

- 1. Choose random A-B-bomd
- 2. Calculate ΔE for A-A \rightarrow B-A
- 3. Flip according to Metropolis or Glauber

7

4 Microcanonical Monte Carlo

4.1 Creutz algorithm

Deterministic algorithm. Softens energy conservation restriction:

Introduce *small* energy reservoir E_d called **demon** which can store a maximum energy E_{max}

- 1. choose randomly a site
- 2. calculate ΔE for spin flip
- 3. Accept flip if

 $E_{\max} \ge E_d - \Delta E \ge 0 \quad \Leftrightarrow \quad E_d - \Delta E \in [0, E_{\max}]$

- algorithm is **deterministic**
- reversible, there exist no transients
- good for multi-spin coding and parallelisation
- obtain temperature T trough histogram $P(E_d)$ of the energies E_d of the demon

- should follow Boltzmann distribution
- demon corresponds to heat bath

4.2 Q2R

Case $E_{max} = 0$ of Creutz algorithm on square lattice. Totalistic cellular automaton

$$\sigma_{ij}(t+1) = \underbrace{f(x_{ij})}_{\text{changer word}} \oplus \sigma_{ij}(T), \quad \sigma_{ij} \in \{1, 0\}$$
$$f(x) = \begin{cases} 1, & \text{if } x = 2\\ 0, & \text{if } x \neq 2 \end{cases}$$

Sum over next neighbors

$$x_{ij} = \sigma_{i-1,j} + \sigma_{i+1,j} + \sigma_{i,j-1} + \sigma_{i,j+1}$$

Expression with logical functions

 $\sigma(t+1) = \sigma(t) \oplus ((\sigma_1 \oplus \sigma_2) \land (\sigma_3 \oplus \sigma_4) \lor ((\sigma_1 \oplus \sigma_3) \land (\sigma_2 \oplus \sigma_4)))$

- deterministic and reversible, but **not ergodic**
- Energy

$$E = \sum_{\langle i,j \rangle} \sigma_i \oplus \sigma_j$$

is a conserved quantity

4.2.1 Implementation

Divide lattice in two sub-lattices σ and $\hat{\sigma}$ and use **multispin coding** to implement reversible bitwise logical automaton

$$R = \begin{cases} \sigma_i(t+1) = f(\widehat{\sigma}_j(t))_{j=\mathrm{nn}(i)} \oplus \sigma_i(t) \\ \sigma_i(t+1) = f\left(f(\widehat{\sigma}_k(t))_{j=\mathrm{nn}(j)} \oplus \sigma_j(t)\right) \widehat{\sigma}_i(t) \end{cases}$$

5 Binder cumulants

 \rightarrow Method to obtain the **critical Temperature**, more accurate than determining the maximum of χ at T_c

5.1 General definition: Cumulants

Cumulants of a random variable X are defined via the **cumulant-generating function** g(t) which is the logarithm of the **moment-generating function**. The cumulants are given as coefficients κ_n in the series expansion:

$$g(t) = \log \langle e^{tX} \rangle = \sum_{n=1} \kappa_n \frac{t^n}{n!}$$

- First cumulant: expected value
- Second and third cumulant: second(variance) and third central moment
- Higher cumulants: polynomial expression of the moments, e.g. $\kappa_4 = \mu_4 3\mu_2^2$
- In statistical physics: normalized with respect to Gaussian fluctations

$$\tilde{\kappa} = 1 - \frac{\mu_4}{3\mu_2^2}$$

which for finite size L systems directly leads to the definition of

5.2 Binder cumulants

$$U_L \equiv 1 - \frac{\left\langle M^4 \right\rangle_L}{3 \left\langle M^2 \right\rangle_L^2}$$

$$\frac{\left\langle M^4 \right\rangle_L}{\left\langle M^2 \right\rangle_L^2} = \frac{L^{\frac{4\beta}{\nu}} \Im\left((T - T_c) L^{\frac{1}{\nu}} \right)}{\left(L^{\frac{2\beta}{\nu}} \Im\left((T - T_c) L^{\frac{1}{\nu}} \right) \right)^2} = \Im_{\mathfrak{C}} \left((T_c - T) L^{\frac{1}{\nu}} \right)$$

which becomes **independent** of L at T_c

Above critical Temperature $T > T_c$ 5.2.1

magnetization follows Gaussian distribution

$$P_L = \sqrt{\frac{L^d}{\pi \sigma_L}} e^{-\frac{M^2 L^d}{\sigma_L}}, \quad \sigma_L = kT 2\chi_L$$

such that

$$\left\langle M^4 \right\rangle_L = 3 \left\langle M^2 \right\rangle_L^2 \quad \Rightarrow \quad U_L = 0$$

5.2.2Below critical Temperatur $T < T_c$

magnetization follows superposition of two Gaussians

$$P_L(M) = \frac{1}{2} \sqrt{\frac{L^d}{\pi \sigma_L}} \left[e^{\frac{(M-M_s)^2 L^d}{\sigma_l}} + e^{\frac{(M-M_s)^2 L^d}{\sigma_l}} \right]$$

such that

$$\left\langle M^4 \right\rangle_L = \left\langle M^2 \right\rangle_L^2 \quad \Rightarrow \quad U_L = \frac{2}{3}$$

5.3Critical temperature

Temperature Data implies Tc = 2.27(1). Exact value is 2.269185

6 **Corrections to Scaling**

 \rightarrow Scaling laws only hold at T_c

$$M(T) = A(T_c - T)^{\beta} + A_1(T_c - T)^{\beta_1} + \cdots$$

$$\xi(T) = C(T_c - T)^{-\nu} + C_1(T_c - T)^{-\nu_1} + \cdots$$

with non-integer subdominant exponents $\beta_1 > \beta$ and $\nu_1 < \beta$ ν , as universal correction to scaling exponents, obtained numerically as fit parameters

$$M(T,L) = L^{\frac{\beta}{\nu}} \mathfrak{J}_M\left((T_c - T)L^{\frac{1}{\nu}}\right) + L^x \mathfrak{J}_M^1\left((T_c - T)L^{\frac{1}{\nu}}\right) + \cdots$$
where $x = \max\left[\frac{\beta_1}{\nu}, \frac{\beta}{\nu_1}, \frac{\beta}{\nu} - 1\right]$

First order transition 7

- For $T < T_c$ Ising model has at H = 0 phase transition of first order
- \rightarrow jump in **magnetization** of ΔM , entropy ΔS and
- \rightarrow susceptibility and specific heat exhibit **delta func**tion behavior at transition latent heat ΔE
- we have hysteresis and for small systems, magnetization jumps after **ergodic time** T_e

Finite Size Scaling of first order tran-7.1sitions

Consider times much larger than T_e . From the distribution of the magnetization of two Gaussians one can derive

$$M(H) = \chi_L^D H + M_L \tanh(\beta H M_L L^d)$$

$$\chi_L(H) = \frac{\partial M}{\partial H} = \chi_L^D + \frac{\beta M_L^2 L^d}{\cosh^2(\beta H M_L L^d)}$$

Maximum of susceptibility and width of the peak

$$\chi_L(H=0) \sim L^d, \quad \Delta \chi_L \sim L^{-a}$$

- finite size behavior: no critical points, no critical epxonents
- BUT signals of the delta function in numerics
- above behavior of maximum and width similar to delta function

ADD SLIDE 95 PICTURE

7.2Potts model

Generalization of the Ising model to more than two states

$$\mathcal{H} = E = -J \sum_{\langle i,j \rangle} \delta_{\sigma_i,\sigma_j} - H_1 \sum_i \delta_{\sigma_1,1} \quad \sigma_i = 1, \dots, q$$

- q = 2 corresponds to Ising model
- $q \rightarrow 1$ bond percolation due to Theorem of Kasteleyn and Fortuin
- application in surface science, opinion model, QCD

- prototype model for **first order transition** (in T)
- 2D: for q > 4 and in D > 2 for q > 2

7.3 Kasteleyn and Fortuin

Consider Potts model on arbitrary graph with bonds ν

$E = J \sum_{\nu} \epsilon_{\nu},$	$\epsilon_{\nu} = \left\{ \right.$	∫0,	if endpoints are in same state
		1,	if endpoints are in different state

Define on bond ν_0 operators of **Contract** *C* and **Deletion** *D*.

Transformation of the partition function

$$Z = \sum_{X} e^{-\beta E(X)} = \sum_{X} e^{-\beta J \sum_{\nu} \epsilon_{\nu}} = \sum_{X} \prod e^{-\beta J \epsilon_{\nu}}$$

Consider bond ν_0 with endpoints *i* and *j*

$$Z = \sum_{X} e^{-\beta J \epsilon_{\nu_0}} \prod_{\nu \neq \nu_0} e^{-\beta J \epsilon_{\nu}}$$

=
$$\sum_{X:\sigma_i = \sigma_j} \prod_{\nu \neq \nu_0} e^{-\beta J \epsilon_{\nu}} + \underbrace{e^{-\beta J} \sum_{X:\sigma_i \neq \sigma_j} \prod_{\nu \neq \nu_0} e^{-\beta J \epsilon_{\nu}}}_{i,j \text{ different states} \Rightarrow \epsilon_{\nu} = 1}$$

- first term: contains all configurations where states at endpoint *i* and *j* are **equal**.
- \rightarrow partition function Z_C after application of the **contraction** operator C
- second term: contains all configurations where states at endpoint *i* and *j* are **different**, factor out $e^{-\beta J \epsilon_{\nu_0}} = e^{-\beta J}$
- partition function Z_D after application of **deletion** operator D on bond ν_0 such that bond ν_0 contribution is missing.

- Z_D still contains contributions for arbitrary *i* and *j*, especially the case $\sigma_i = \sigma_j$ which is already included in Z_C .
- \rightarrow subtract those cases for the second term $Z_D Z_C$

$$Z = Z_C + e^{-\beta J} (Z_D - Z_C) = (1 - e^{-\beta J}) Z_C + e^{-\beta J} Z_D$$

= $p Z_C + (1 - p) Z_D$, $p \equiv 1 - e^{-\beta J}$

Partition function splitting for bond ν_0

$$Z = pZ_{C_{\nu_0}} + (1-p)Z_{D_{\nu_0}}$$

Partition function subsequent splitting for bond ν_1

	$Z = p^2 Z_{C_{\nu_0} C_{\nu_1}}$	$+ p(1-p)Z_{C_{\nu_0}D_{\nu_1}}$	$+(1-p)pZ_{D_{\nu_0}C_{\nu_1}}$	$+(1-p)^{2}$
--	-----------------------------------	----------------------------------	---------------------------------	--------------

- Repeat for all edges until only disconnected sites remain
- \rightarrow graph is reduced to set of separated points
- \rightarrow correspond to connected, contracted, (occupied) bonds (clusters)
- each can be in q different states, hence $q^{\text{#of clusters}}$ possibile states.

$$Z = \sum_{\mathcal{C}} q^{\text{\#of clusters}} p^c (1-p)^d = \left\langle q^{\text{\#of clusters}} \right\rangle$$

with configuration of bond percolation C, c and d number of contracted or deleted bond, respectively.

Within the percolation representation c can be also interpreted as the number of **occupied bonds** and d as the number of **empty bonds**

7.4 Coniglio-Klein Clusters

- consider unit of all **connected sites** that are in **same** state
- remove **bonde** between them with probability $p \equiv 1 e^{-\beta J}$

8 Cluster algorithms

- Single flip algorithms are slow for $T < T_c$
- probability to flip group of n spins simultaneously even smaller: $(e^{-2\beta J})^n \xrightarrow{s \gg 1} 0$

Probability that cluster C is in state σ_0

$$p(C, \sigma_0) = p^{c_C} (1-p)^{d_C} \sum_{C \setminus C} q^{\#} p^c (1-p)^d$$

is independent of σ_0 Detailed Balance for change $\sigma_0 \rightarrow \sigma_1$

$$p(C,\sigma_0)W((C,\sigma_0)\to (C,\sigma_1)) = p(C,\sigma_1)W((C,\sigma_1)\to (C,\sigma_1))$$

is fullfilled since by above independence of $\sigma_i \ p(C, \sigma_0) = p(C, \sigma_1)$

Glauber

$$W((C,\sigma_0) \to (C,\sigma_1)) = \frac{p(C,\sigma_1)}{p(C,\sigma_0) + p(C,\sigma_1)} = \frac{1}{2}$$

 \rightarrow choose new state always with probability $\frac{1}{2}$.

Metropolis

$$W((C,\sigma_0) \to (C,\sigma_1)) = \min\left[\frac{p(C,\sigma_1)}{p(C,\sigma_0)}, 1\right] = 1$$

8.1 Swendsen-Wang algorithm

- occupy bond with probability $p = 1 e^{-\beta J}$ if states are eqial, otherwise leave empty
- identify clusters with **Hoshen-Kopelman** algorithm
- Flip each cluster with probability 1/2 for Ising or choose always a new state for q>2
- critical slowing down significantly reduced $z \approx 0.3(0.55)$

8.2 Wolff algorithm

- choose a site randomly
- if neighboring site is in the same state add to cluster with $p = 1 {}^{-\beta J}$
- Repeat until every site on the boundary of the cluster has been checked exactly once
- choose new state for the cluster (with probability one)

8.3 General formalism

after D. Kandel, E. Domany and A. Brandt (1989) **partition function**

$$Z = \sum_X \sum_G (X,G) = \sum_X p(X), \quad \text{e.g. } p(X) = e^{-\beta E(X)}$$

Detailed Balance

$$p(X,G)W((X,G) \to (X',G)) = p(X',G)W((X',G) \to (X,G))$$

Glauber

$$W((X,G) \to (X'G)) = \frac{p(X',G)}{p(X,G) + p(X',G)}$$

Metropolis

$$W((X,G) \to (X'G)) = \min\left[\frac{p(X',G)}{p(X,G)}, 1\right]$$

Algorithm simplification

$$p(X,G) = \Delta(X,G)V(g), \quad \Delta(X,G) = \begin{cases} 1\\ 0 \end{cases}$$

8.4 Improved estimators

From one configuration one can already get an average over many states because one can flip any subset of clusters. **magnetization**

$$\boxed{\langle M_i \rangle = \left\langle \frac{1}{2} (\sigma_i - \sigma_i) \right\rangle = 0}$$

correlation function

$$\langle \sigma_i \sigma_j \rangle = \begin{cases} 1, & \text{if } i, j \text{ in the same cluster} \\ 0, & \text{otherwise} \end{cases}$$

Susceptibility

$$\left| \chi = \beta \left(\left\langle M^2 \right\rangle - \left\langle M \right\rangle^2 \right), \ \left\langle M^2 \right\rangle = \frac{1}{N^2} \sum_{i,j} \left\langle \sigma_i \sigma_j \right\rangle = \frac{1}{N^2} \left\langle \sum_{\text{Cluster}} \sigma_j \right\rangle$$

9 Histogram methods

Obtain results for a new temperature T^\ast using simulation results one already has for temperature T

Time average of quantity Q at temperature T

$$Q(T) = \frac{1}{Z_T} \sum_E Q(E) p_T(E)$$
$$Z_T = \sum_E p_T(E), \quad p_T(E) = g(E) e^{-\frac{E}{kT}}$$

with density of states g(E). Quantity at new temperature T^*

$$Q(T^*) = \frac{1}{Z_{T^*}} \sum_E Q(E) p_{T^*}(E)$$

Express new probabilities

$$p_{T^*}(E) = g(E)e^{-\frac{E}{kT^*}} = p_T(E)\underbrace{e^{-\frac{E}{kT^*}\frac{E}{kT}}}_{\equiv f_{T,T^*}(E)}$$

to obtain

$$Q(T^*) = \frac{\sum_E Q(E) p_T(E) f_{T,T^*}(E)}{\sum_E p_T(E) f_{T,T^*}(E)}$$

9.1 Broad histogram method

- problem of above method: values for Q(E) were sampled close to the maximum of $p_T(E)$, very peaked for large systems
- \rightarrow Overlap of $p_T(E)$ and $p_{T^*}(E)$ very small
- \rightarrow very few samples at the maximum of p_{T^*}
- statistics become very bad for large $|T-T^{\ast}|$

Markov process in energy space

- $N_{\rm up}$ number of all processes that **increase** the energy $E \to E + \Delta E$
- N_{down} number of processes that **decrease** the energy $E \rightarrow E \Delta E$
- Detailed balance

$$g(E + \Delta E)N_{\text{down}}(E + \Delta E) = g(E)N_{\text{up}}(E)$$

number of energy decreasing processes with $E + \Delta E \rightarrow E$ equals number of energy increasing processes with $E \rightarrow E + \Delta E$.

• Metropolis: Chosse new configuration for instance by flipping randomly a spin $E \to E - \Delta E$ accept if $E \to E + \Delta E$ accept with probability

$$\frac{N_{\rm down}(E+\Delta E)}{N_{\rm up}(E)}$$

Take logarithm of detailed balance and divide by $\Delta E.$ For small ΔE

$$\log g(E + \Delta E) - \log g(E) = \log N_{\rm up}(E) - \log N_{\rm down}(E + \Delta E)$$
$$\Rightarrow \quad \frac{\partial \log g(E)}{\partial E} = \frac{1}{\Delta E} \log \frac{N_{\rm up}(E)}{N_{\rm down}(E + \Delta E)}$$

- 1. Check for each site of a configuration if change of state would increase or decrease energe and change $N_{\rm up}$ and $N_{\rm down}$ accordingly
- 2. Choose a site randomly and change state if energy is decreased. If energy is increased change state with probability $\boxed{N_{\rm down}/N_{\rm up}}$
- 3. At each accumulate values for $N_{\rm up}, N_{\rm down}$ and Q(E) and calculate

$$Q(T) = \frac{\sum_E Q(E)g(E)e^{-\frac{E}{kT}}}{\sum_E g(E)e^{-\frac{E}{kT}}}$$

10 Real space renormalization

- power laws at criticality are a result of **scale invariance** of the system
- \rightarrow different properties of the system remain unchanged in different length scale: e.g. distribution of areas with aligned spins versus boiling water

- \rightarrow scale invariance is basic idead of **renormalization** group
- map from small scale system to large scale system demanding invariance of the basic form of physical description (for a likewise rescaled temperature/magnetic field)
- critical point becomes a fixed point in the description

Example: spin model an quadratic lattice

Abb. 7.4 *Renormierung eines Spinsystems. Die quadratischen Gitterplätze sind die Gitterplätze des renormierten Systems. Das Gitter des renormierten Systems ist gepunktet eingetragen.*

- we choose **dimension** d = 2 and **scale factor** l = 3
- \rightarrow new spin state \tilde{s}_j replace nine old states s_j

Free energy

- free energy is **extensive**, thus proportional to the degrees of freedom of the system
- \rightarrow free energy density must invariant under transformation:

$$\tilde{F}(\tilde{\varepsilon},\tilde{H}) = l^{-d}F(\varepsilon,H), \quad \epsilon \equiv T - T_c$$

• **near criticality** for all thermodynamic quantities hold **homogeneous scaling laws**:

$$F(\varepsilon,H) = l^d F(l^{Y_T}, l^{y_H}H)$$

where y_T and y_H are critical exponents related to the classical ones

• By comparison with the first formula

$$\Rightarrow \widehat{\varepsilon} = l^{y_T} \varepsilon, \quad \widehat{H} = l^{y_H} H$$

Correlation length

Described by critical exponent $\left| \xi \sim |\varepsilon|^{-\nu} \right|$ Rescaling with l yields $\left[\widehat{\varepsilon}^{-\nu} \sim \widehat{\xi} = \frac{\xi}{l} \right]$ and we get for the **temperature exponent**

$$\widehat{\varepsilon} = \frac{\varepsilon}{l^{-\frac{1}{\nu}}} = l^{\frac{1}{\nu}} \varepsilon \stackrel{!}{=} l^{y_t} \varepsilon, \quad y_T = \frac{1}{\nu}$$

and similarly for the magnetic field exponent.

Renormalization by decimation Remove every second spin $\rightarrow l = \sqrt{2}$

Abb. 7.5 Die quadratischen Gitterplätze gehören zum renormierten System. Wechselwirkungen mit übernächsten Nachbarn (L) sind gestrichelt eingetragen. Wechselwirkungen mit nächsten Nachbarn (K) sind gepunktet dargestellt

10.1 Renormalized Hamiltonian

11 Molecular Dynamics

generalized coordinates with α degrees of freedom of particle i

$$\mathbf{q}_i = (q_i^1, \dots, q_i^{\alpha}), \quad \mathbf{p}_i = (p_i^1, \dots, p_i^{\alpha})$$

N particles

$$Q = (\mathbf{q}_1, \dots, \mathbf{q}_N), \quad P = (\mathbf{p}_1, \dots, \mathbf{p}_N)$$

Hamiltonian and kinetic energy

$$\mathcal{H}(P,Q) = K(P) + V(Q), \quad K(P) = \sum_{i} \sum_{k=1}^{\alpha} \frac{(p_i^k)^2}{2m_i}$$

Expansion of potential

$$V(Q) = \sum_{i} v_1(q_i) + \sum_{i} \sum_{j>i} v_2(q_i, q_j) + \sum_{i} \sum_{j>i} \sum_{k>j} v_3(q_i, q_j, q_k) + \cdots$$

Three or more body interactions neglected and their effect considered in **effective two body interaction**

$$v_2^{\text{eff}}(q_i, q_j) = v^{\text{attr}}(r) + v^{\text{rep}}(r), \quad r = |\mathbf{q}_i - \mathbf{q}_j|$$

11.1 Potentials

11.1.1 Hard core interaction

$$v^{
m rep}(r) = \begin{cases} \infty, & r < \sigma pprox 0.35 nm, \\ 0, & r \ge \sigma \end{cases}$$

Problem: forces $\mathbf{F} = -\nabla V$ are delta function like

11.1.2 Elastic repulsion

ADD PIC PAGE 104

$$v^{\text{rep}}(r) = \begin{cases} \frac{k}{2}(R-r)^2, & r < R\\ 0, & r \ge R \end{cases}, \quad R = R_1 + R_2$$

Repulsive part of elastic spring potential with spring constant k, force grows linearly with increasing overlap. Finite range unrealistic.

11.1.3 Soft core repulsion

$$v^{\rm rep}(r) = \varepsilon \left(\frac{\sigma}{r}\right)^\nu$$

- $\nu = 1$ electrostatics and gravity, $\nu = 12$ soft repulsion
- slowly decaying potentials problematic in numerics

11.1.4 square potentials

$$v(r) = \begin{cases} \infty, & r < \sigma_1 \\ \infty, & \sigma_1 \le r < \sigma_2 \\ \infty, & r \ge \sigma_2 \end{cases}$$

again infinite forces

11.1.5 Lenard Jones potential

$$v^{\mathrm{LJ}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

11.2 Equations of motion

Hamiltonian equations of motion

$$\dot{q}_i^k = \frac{\partial \mathcal{H}}{\partial p_i^k}, \quad \dot{p}_i^k = -\frac{\partial \mathcal{H}}{\partial q_i^k}, \quad k = 1, \dots, \alpha, \quad i = 1, \dots, N$$

Coupled Newtonian equations of motion

$$\begin{aligned} \mathbf{q}_i &= \mathbf{x}_i, & \mathbf{\dot{q}}_i &= \mathbf{v}_i \\ \mathbf{\dot{x}}_i &= \mathbf{v}_i &= \frac{\mathbf{p}_i}{m_i} & \mathbf{\dot{p}}_i &= -\nabla_i V(Q) = \mathbf{f}_i \\ m_i \mathbf{\ddot{x}}_i &= \mathbf{f}_i &= \sum_j \mathbf{f}_{ij} \end{aligned}$$

11.3 Conservation laws

- Energy conservation as long as K(P) and V(Q) do not explicitly depend on time
- Momentum conservation (if the system has no walls) $\boxed{\mathbf{P} = \sum_{i} \mathbf{p}_{i}}$
- Angular momentum for spherical systems $\mathbf{L} = \sum_{i} \mathbf{x}_{i} \times \mathbf{p}_{i}$
- Time reversal invariance

11.4 Contact time

- $r_{\rm max}$ turning point of a colliding particle
- $\rightarrow [E = V]$ maximal potential energy, no kinetic energy
- r_{\min} maximum range of the potential
- $\rightarrow [\underline{E} = K]$ maximal kinetic energy, for elastic potential: starting point σ , for potentials with attractive part: minimum
- contact time for hard core potentials would be instantly

Energy and velocity

$$E = \frac{1}{2}m\dot{r}^2 + V(r) = \text{const} \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = \left[\frac{2}{m}(E - V(r))\right]^{\frac{1}{2}}$$

Contact time

$$t_c = 2 \int_0^{\frac{t_c}{2}} = 2 \int_{r_{\min}}^{r_{\max}} \frac{\mathrm{d}t}{\mathrm{d}r} \,\mathrm{d}r = 2 \int_{r_{\min}}^{r_{\max}} \left[\frac{2}{m}(E - V(r))\right]^{-\frac{1}{2}} \mathrm{d}r$$

11.5 Solving equations of motion

- Euler method
- Runge-Kutta method
- Predictor-Corrector method
- Verlet method
- Leap-frog method

11.6 Programming Tricks

 \to most time consuming loop is calculation of forces since all pairs $(\sim N^2)$ of particles need to be considered

• For potentials with *even* powers: Instead of calculating the square root, work with the square if possible:

$$r_{ij} = \sqrt{\sum_{\alpha=1}^d (x_i^\alpha - x_j^\alpha)^2} \rightarrow V(r) \sim r^{2n} \Rightarrow \mathbf{f}_i = f(r^{2(n-1)})\mathbf{r}$$

- cut-off radius r_c possible for some (short range) potentials: exactly zero for larger distances. e.g $r_c = 2.5\sigma$ for LJ-Potenial
- for simple potentials **Look-up tables** are possible: Divide intervall $(0, r_c^2)$ in K pieces with points l_k create look-up table F(k):

$$l_k = \frac{k}{K} r_c^2, \quad F(k) = f(\sqrt{l_k})$$

where the index must be calculated through

$$k = \left\lfloor S \sum_{\alpha} (x_i^{\alpha} - x_j^{\alpha})(x_i^{\alpha} - x_j^{\alpha}) \right\rfloor + 1, \quad S = \frac{K}{r_c^2}$$

• **Newton-Gregory Interpolation** to decrease error from discretization of the potential:

$$f(x) = F(k) + (k - zS)(F(k - 1) - F(k)), \quad z = \sum_{\alpha} (x_i^{\alpha} + zS)(F(k - 1) - F(k)),$$

12 Verlet method

Taylor expansion in time step $\Delta t \approx t_c/20$

$$(x + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{v}(t) + \frac{1}{2} \Delta t^2 \dot{\mathbf{v}}(t) + \cdots$$
$$(x - \Delta t) = \mathbf{x}(t) - \Delta t \mathbf{v}(t) + \frac{1}{2} \Delta t^2 \dot{\mathbf{v}}(t) + \cdots$$

and add equations

$$\mathbf{x}(t + \Delta t) = 2\mathbf{x}(t) - \mathbf{x}(t - \Delta t) + \Delta t^2 \ddot{\mathbf{x}}_{\mathbf{i}}(t)$$

with forces $\ddot{\mathbf{x}}$ from Newtonian equations of motion

$$\ddot{\mathbf{x}}_{\mathbf{i}} = \frac{1}{m_i} \sum_{j} \mathbf{f}_{ij}, \quad \mathbf{f}_{ij} = -\nabla V(r_{ij}(t)), \quad \Delta t \approx \frac{1}{10}$$
$$\int_{t_{\min}}^{r_{\max}} \left[\frac{2}{m} (E - V(r))\right]^{-\frac{1}{2}} \mathrm{d}r$$

and insert all in

$$\mathbf{x}_i(t + \Delta t) = 2\mathbf{x}_i(t) - \mathbf{x}_i(t - \Delta t) + \Delta t^2 \ddot{\mathbf{x}}_i(t)$$

- needs to store two time steps t and $t \Delta t$
- (Local) error is $\mathcal{O}(\Delta t^4)$: third order algorithm
- exact time reversal

• velocities can be obtained through

$$\mathbf{v}(t) = \frac{\mathbf{x}(t + \Delta t) - \mathbf{x}(t - \Delta t)}{2\Delta t}$$

- **Problem**: last term $\mathcal{O}(\Delta^0)$ is very small compared to previous ones $\mathcal{O}(\Delta t^2) \to$ roundoff errors
- Improve systematically adding more orders

12.1Leap-Frog method

Consider velocities at intermediate times

$$\mathbf{v}(t + \frac{1}{2}\Delta t) = \mathbf{v}(t - \frac{1}{2}\Delta t) + \Delta \ddot{\mathbf{x}}(t)$$
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{v}(t + \frac{1}{2}\Delta t)$$

Comparison Verlet Leap frog

Abb. 8.1 Veranschaulichung der Vorgehensweise der Verlet-Methode (obere Reihe) und der leap-frog Methode (untere Reihe) (nach [15])

Comparison Euler Leap frog Leap frog:

$$\begin{aligned} \dot{\mathbf{v}}(t + \Delta t) &= \frac{\mathbf{f}(\mathbf{x}(t))}{m} \\ \mathbf{v}(t + \Delta t) &= \mathbf{v}(t) + \Delta t \dot{(\mathbf{t} + \Delta \mathbf{t})} \\ \mathbf{x}(t + \Delta t) &= \mathbf{x}(t) + \Delta t \mathbf{v}(t + \Delta t) \end{aligned}$$

Euler

$$\begin{split} \dot{\mathbf{v}}(t + \Delta t) &= \frac{\mathbf{f}(\mathbf{x}(t))}{m} \\ \mathbf{x}(t + \Delta t) &= \mathbf{x}(t) + \Delta t \mathbf{v}(t) \\ \mathbf{v}(t + \Delta t) &= \mathbf{v}(t) + \Delta \dot{\mathbf{v}}(t + \Delta t) \end{split}$$

- No addition of $\mathcal{O}(\Delta t^0)$ and $\mathcal{O}(\Delta t^2)$ terms any more
- for larger Δt we have larger energy fluctuations but on average energy should be constant
- Precision given by

$$\boxed{\sqrt{\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2}}$$

12.2Verlet tables

Avoids to query every $\mathcal{O}(N^2)$ particle pairs in every step.

- Define a neighborhood with radius $r_l > r_c$ around each particle i
- store all the coordinates if the particles in this neighborhood in a vector LIST with length $N \cdot N_u$, where N_u is the average number of particles in the neighbothood
- LIST is a one-dimensional vector which stores all point neighborhoods sequentially
- a vector POINT[i] contains the index of the first neighbor particle of particle i
- \rightarrow particles in the neighborhood of *i* are: LIST[POINT[i]],...,LIST[POINT[i+1]-1]
- $\left. \frac{r_l 2r_c}{\Delta t v_{\max}} \right|$ time steps, Verlet table must be • Every n =**renewed** $(n \approx 10 - 20)$ since otherwise particles beyond distance r_l could reach r_c
- Renewal requires still N^2 operations

Linked cell method 12.3

- Place grid of size M^d above system, s.t. each cell is larger than $2r_c$
- all particles that can interact with particle *i* lie in the shaded region
- \rightarrow on average only necessary to test $N \cdot 3^d N/M^d$ paritcles reducing the loop by $(M/3)^3$
- Store in vector FIRST with length M^d for each cell the index of the first particle
- No particle in cell *j* set FIRST[j]=0
- In vector LIST[i] with length N store for each particle i the index of the next particle in the same cell
- for *last* particle in a cell LIST[i]=0
- when particle flies from one cell to another, renew FIRST and LIST locally \Rightarrow algorithm is $\mathcal{O}(N)$

Program to find all particles in cell i = 2

$$M[1] = FIRST[i];$$

 $i=2;$
while $(M[i-1]!=0)$
 $M[j] = LIST[M[j-1]];$

13 Molecules

- atoms are bind together through the attractive part of their potential
- \rightarrow needs *deep* potentials and is hence computationally expensive
- forces *inside* molecules at least one order of magnitude larger than *between* them
- assume covalent bonds do not break and keep bond and angles fixed.
- \rightarrow two possibilities

13.1 Lagrange multipliers

Consider the example of a water molecule with fixed bond length. Atom i (i = 1, 2, 3) follows the equation:

$$\boxed{m_i \mathbf{\ddot{x}_i} = \mathbf{f}_i + \mathbf{g}_i}$$

where f_i are forces from other molecules and \mathbf{g}_i forces to impose the contraints.

Contraint equation

bond length should be given by d_{12} and d_{23}

$$\chi_{12} = r_{12}^2 - d_{12}^2 = 0, \quad r_{ij} = \|\mathbf{r}_{ij}\|$$

$$\chi_{23} = r_{23}^2 - d_{23}^2 = 0, \quad \mathbf{r}_{ij} = \mathbf{x}_i - \mathbf{x}_j$$

yields contraint forces

$$\mathbf{g}_k = \frac{1}{2}\lambda_{12}\nabla_{\mathbf{x}_k}\chi_{12} + \frac{1}{2}\lambda_{23}\nabla_{\mathbf{x}_k}\chi_{23}$$

with yet to be determined **Lagrange multipliers** λ_{12} and λ_{23}

$$\Rightarrow \mathbf{g}_1 = \lambda_{12} \mathbf{r}_{12}, \quad \mathbf{g}_2 = \lambda_{23} \mathbf{r}_{23} - \lambda_{12} \mathbf{r}_{12}, \quad \mathbf{g}_3 = -\lambda_{23} \mathbf{r}_{23}$$

Time stepping

Execute Verlet in two steps: Without constraint forces:

$$\mathbf{x}_{i}^{!}(t + \Delta t) = 2\mathbf{x}_{i} - \mathbf{x}_{i}(t - \Delta t) + \Delta t^{2} \frac{\mathbf{f}_{i}}{m_{i}}$$

Correction with yet unknown constraint forces

$$\mathbf{x}_{i}(t + \Delta t) = \mathbf{x}_{i}^{!}(t + \Delta t) + \Delta t^{2} \frac{\mathbf{g}_{i}}{m_{i}}$$

Finally, insert \mathbf{g}_i

$$\mathbf{x}_{1}(t + \Delta t) = \mathbf{x}_{1}^{!}(t + \Delta t) + \Delta t^{2} \frac{\lambda_{12}}{m_{1}} \mathbf{r}_{12}(t)$$

$$\mathbf{x}_{2}(t + \Delta t) = \mathbf{x}_{2}^{!}(t + \Delta t) + \Delta t^{2} \frac{\lambda_{23}}{m_{2}} \mathbf{r}_{23}(t) - \Delta t^{2} \frac{\lambda_{12}}{m_{2}} \mathbf{r}_{12}(t)$$

$$\mathbf{x}_{3}(t + \Delta t) = \mathbf{x}_{3}^{!}(t + \Delta t) + \Delta t^{2} \frac{\lambda_{23}}{m_{3}} \mathbf{r}_{23}(t)$$

Insert these expression into the **constraint condition** to obtain λ_{12} and λ_{23}

$$\|\mathbf{x}_{1}(t + \Delta t) - \mathbf{x}_{2}(t + \Delta t)\|^{2} = d_{12}^{2}$$
$$\|\mathbf{x}_{2}(t + \Delta t) - \mathbf{x}_{3}(t + \Delta t)\|^{2} = d_{23}^{2}$$

leading to a coupled system of quadratic equations

$$\left[\mathbf{x}_{1}^{!}(t+\Delta t) - \mathbf{x}_{2}^{!} + \Delta t^{2}\mu_{12}\mathbf{r}_{12}(t) - \Delta t^{2}\frac{\lambda_{23}}{m_{2}}\mathbf{r}_{23}(t)\right]^{2} = d_{12}^{2}$$
$$\left[\mathbf{x}_{2}^{!}(t+\Delta t) - \mathbf{x}_{3}^{!} + \Delta t^{2}\mu_{23}\mathbf{r}_{23}(t) - \Delta t^{2}\frac{\lambda_{12}}{m_{2}}\mathbf{r}_{23}(t)\right]^{2} = d_{23}^{2}$$

where $\mu_{ij} = \left(\frac{1}{m_i} + \frac{1}{m_j}\right)$ is the reduced mass. Solve for λ_{12} and λ_{23} and use to calculate $\mathbf{x}_i(t + \Delta t)$.

13.2 Rigid bodies

Consider rigid body of n points i of mass m_i Coordinates of the center of mass

$$M\mathbf{x}_{cm} \equiv \sum_{i=1}^{n} \mathbf{x}_{i} m_{i}, \quad M \equiv \sum_{i=1}^{n} m_{i}$$

which follows the equation

$$M\ddot{\mathbf{x}}_{\rm cm} = \sum_{i=1}^{n} \mathbf{f}_i \equiv f_{\rm cm}$$

Torque

$$\mathbf{T} \equiv \sum_{i=1}^{n} \mathbf{d}_i imes \mathbf{f}_i, \quad \mathbf{d}_i \equiv \mathbf{x}_i - \mathbf{x}_{\mathrm{cm}}$$

13.2.1 Degrees of freedom

- **2D**: ω always direct orthogonal to plane.
- \rightarrow rotations can be described by **scalar** angle
- \rightarrow three degrees of freedom (2 translational and 1 rotational)
- **3D**: ω : three generalized coordinates (angles) necessary
- \rightarrow six degrees of freedom (3 translational and 1 rotational)

13.2.2 Two dimension

moment of inertia and torque

$$I = \int \int_{A} r^{2} \rho(r) \, \mathrm{d}A, \quad T = \int \int_{A} f_{t}(r) r \, \mathrm{d}A$$

equation of motion for rotation

$$I\omega = T$$

Time evolution of the angle ϕ using Verlet

$$\phi(t + \Delta t) = 2\phi(t) - \phi(t - \Delta t) + \Delta t^2 \underbrace{T(t)}_{j \in A} I_{\dot{\omega}}$$
$$T(t) = \sum_{j \in A} \left(f_j^y(t) \cdot d_j^x(t) - f_j^x(t) \cdot d_j^y(t) \right)$$

where $d_j^x(t)$ denotes the *x*-component of the vector connecting the center of mass to mass element *j* Full time evolution

$$\mathbf{x}(t + \Delta t) = 2\mathbf{x}(t) - \mathbf{x}(t - \Delta t) + \Delta t^2 M^{-1} \sum_{j \in A} \mathbf{f}_j(t)$$
$$\phi(t + \Delta t) = 2\phi(t) - \phi(t - \Delta t) + \Delta t^2 I^{-1} T(t)$$

13.2.3 Three dimensions

Angular momentum

$$\mathbf{L} \equiv m_i \mathbf{d}_i \times \mathbf{v}_i = \sum_{i=1}^n m_i \mathbf{d}_i \times (\mathbf{d}_i \times \omega)$$
$$= \sum_{i=1}^n m_i \left(\mathbf{d}_i (\mathbf{d}_i \cdot \omega) - \mathbf{d}_i^2 \omega \right) = \mathbf{I} \omega$$

Equation of motion

$$\mathbf{\dot{L}} = \mathbf{I}\dot{\omega} = \mathbf{T}$$

such that **I** is not a scalar any more.

Tensor of intertia

$$\mathbf{I} = \sum_{i=1}^{n} m_i \left(\mathbf{d}_i^T \otimes \mathbf{d}_i - d_i^2 \mathbf{I} \right)$$

where \otimes denotes the **dyadic product**.

- eigenvectors span a body-fixed coordinate system with origin in the center of mass
- transform from **lab-fixed** to **body-fixed** system with $\mathbf{e}^{b} = \mathbf{A}\mathbf{e}^{l}$ where the transformation matrix is unfortunately unknown and changes with time

Equations in body-frame

$$\dot{\mathbf{L}} = \mathbf{T}^l \quad \Rightarrow \quad \dot{\mathbf{L}}^{\mathbf{b}} + \omega^b \times \mathbf{L}^b = \mathbf{I}\dot{\omega}^{\mathbf{b}} + \omega^b \times \mathbf{L}^b = \mathbf{T}^b$$

leading to the following system of equation with separated $\dot{\omega}_{\mathbf{i}}^{\mathbf{b}}$

$$\mathbf{I}\dot{\boldsymbol{\omega}}^{\mathbf{b}} = \mathbf{T}^{b} - \boldsymbol{\omega}^{b} \times \mathbf{L}^{b} \iff \begin{cases} \dot{\boldsymbol{\omega}}_{x}^{b} &= \frac{T_{x}^{b}}{I_{xx}} + \left(\frac{I_{yy} - I_{zz}}{I_{xx}}\right) \boldsymbol{\omega}_{y}^{b} \boldsymbol{\omega}_{z}^{b} \\ \dot{\boldsymbol{\omega}}_{y}^{b} &= \frac{T_{y}^{b}}{I_{xx}} + \left(\frac{I_{zz} - I_{xx}}{I_{yy}}\right) \boldsymbol{\omega}_{z}^{b} \boldsymbol{\omega}_{x}^{b} \\ \dot{\boldsymbol{\omega}}_{z}^{b} &= \frac{T_{z}^{b}}{I_{xx}} + \left(\frac{I_{xx} - I_{yy}}{I_{zz}}\right) \boldsymbol{\omega}_{x}^{b} \boldsymbol{\omega}_{y}^{b} \end{cases}$$

1. Calculate torque in lab system and transform to body system

$$\mathbf{T}^l = \sum_{i=1}^n \mathbf{d}_i imes \mathbf{f}_i \quad o \quad \mathbf{T}^b = \mathbf{A} \mathbf{T}^l$$

2. evolve angular velocities in body frame

$$\begin{split} \omega_x^b(t + \Delta t) &= \omega_x^b(t) + \Delta t \frac{T_x^b(t)}{I_{xx}} + \Delta t \left(\frac{I_{yy} - I_{zz}}{I_{xx}}\right) \omega_y^b(t) \omega_z^b(t) \\ \omega_y^b(t + \Delta t) &= \omega_y^b(t) + \Delta t \frac{T_y^b(t)}{I_{yy}} + \Delta t \left(\frac{I_{zz} - I_{xx}}{I_{yy}}\right) \omega_z^b(t) \omega_z^b(t) \\ \omega_z^b(t + \Delta t) &= \omega_z^b(t) + \underbrace{\Delta t \frac{T_z^b(t)}{I_{zz}}}_{\text{torque forces}} + \underbrace{\Delta t \left(\frac{I_{xx} - I_{yy}}{I_{zz}}\right) \omega_x^b(t) \omega_y^b(t) \\ \underbrace{\Delta t \left(\frac{I_{zz} - I_{zx}}{I_{zz}}\right) \omega_z^b(t) - \underbrace{\Delta t \left(\frac{I_{zz} - I_{zx}}{I_{zz}}\right) - \underbrace{\Delta t \left($$

3. transform back to lab frame

$$\omega^{l}(t + \Delta t) = \mathbf{A}^{T} \omega^{b}(t + \Delta t)$$

13.2.4 Euler angles

Rotation in three dimensions described by three **Euler** angles ϕ, θ and ψ .

- 1. rotate around $z\text{-}\mathbf{axis}$ by ϕ
- 2. rotate around x-axis by θ
- 3. rotate around *new* z-axis by ψ

$$\mathbf{A} = \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\phi & -\sin\delta\\ \sin\phi & \cos\phi\\ 0 & 0 \end{pmatrix}$$

Relation to angular velocties

$$\begin{split} \dot{\phi} &= -\omega_x^l \frac{\sin \phi \cos \theta}{\sin \theta} + \omega_y^l \frac{\cos \phi \cos \theta}{\sin \theta} + \omega_z^l \\ \dot{\theta} &= \omega_x^l \cos \theta + \omega_y^l \sin \phi \\ \dot{\psi} &= \omega_x^l \frac{\sin \phi}{\sin \theta} - \omega_y^l \frac{\cos \phi}{\sin \theta} \end{split}$$

 \rightarrow equations become singular for $\theta = 0$ and $\theta = \pi$!

Strategy

13.3 Quaternions

$$\mathbb{Q} = (q_0, q_1, q_2, q_3), \text{ with } q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$$

Definition from Euler angles

$$q_0 \equiv \cos \frac{1}{2}\theta \cos \frac{1}{2}(\phi + \psi)$$

$$q_1 \equiv \sin \frac{1}{2}\theta \cos \frac{1}{2}(\phi - \psi)$$

$$q_2 \equiv \sin \frac{1}{2}\theta \sin \frac{1}{2}(\phi - \psi)$$

$$q_3 \equiv \cos \frac{1}{2}\theta \sin \frac{1}{2}(\phi + \psi)$$

Transformation matrix

$$\mathbf{A} = \begin{pmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 + q_0q_1) \\ 2(q_1q_3 + q_0q_2) & 2(q_2q_3 - q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{pmatrix}$$

First order linear equations

$$\begin{pmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & -q_3 & q_2 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix} \begin{pmatrix} 0 \\ \omega_x^b \\ \omega_y^b \\ \omega_z^b \end{pmatrix}$$

Back transformation to Euler angles

$$\phi = \arctan\left(\frac{2(q_0q_1 - q_2q_3)}{1 - 2(q_1^2 + q_2^2)}\right)$$

$$\theta = \arctan\left(2(q_0q_2 - q_1q_3)\right)$$

$$\psi = \arctan\left(\frac{2(q_0q_3 + q_1q_2)}{1 - 2(q_2^2 + q_3^2)}\right)$$

Strategy

- Calculate torque T(t) in body-frame
- Use to obtain $\omega_b(t + \Delta t)$ and map to quaternions $q_i(t + \Delta t)$
- also possible: insert torque directly into e.o.m. of the quaternions an obtain second order differential equation
- \rightarrow avoid to calculate ω

13.4 Long-range potentials

- potentials that decay slower than r^{-d}
- e.g. electrostatics, gravity, dipoles
- no cut-off r_c possible
- \rightarrow would be equivalent in the electrostatic case to introduction of a charged sphere of radius r_c around considered particle
- methods
 - Ewald method
 - particle-mesh methods
 - reaction field method

13.5 Ewald summation

- consider periodic boundaries and periodic images
- length of original system L, number of original particles N
- sum over all images

$$V = \frac{1}{2} \sum_{\mathbf{n}}' \sum_{i,j}^{N} z_i z_j |\mathbf{r}_{ij} + \mathbf{n}|^{-1}, \ \mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j,$$

where \sum' denotes the exclusion of $\mathbf{n} = 0$ for i = j to avoid self-interaction and $\mathbf{n} = (n_x L, n_y L, n_z L)$ with $n_i \in \mathbb{Z}$ connects the center of the system to the center of the images.

• \rightarrow conditionally convergent(order-dependent) and converges very slowly

13.6 Ewald method

• each charge be screened by **Gaussian charge distribution** of opposite sign and equal magnitude

$$\rho_i(r) = \frac{z_i \kappa^3}{\pi^{\frac{3}{2}}} e^{-\kappa^2 r^2}$$

- κ describes smearing out of the charge
- extra screening charge must again be cancelled by charge density of opposite sign

$$V = \frac{1}{2} \sum_{ij} \left(\sum_{\mathbf{n}}' z_i z_j \frac{\operatorname{erfc}(\kappa |\mathbf{r}_{ij} + \mathbf{n}|)}{|\mathbf{r}_{ij} + \mathbf{n}|} + \frac{1}{\pi L^3} \sum_{\mathbf{k} \neq 0} z_i z_j \frac{4\pi^2}{k^2} e^{-\frac{k^2}{4\kappa^2}} \cos(\mathbf{k} \cdot \mathbf{r}_{ij}) \right) - \frac{\kappa}{\sqrt{\pi}} \sum_i z_i^2$$

13.7 Reaction field method

- usually weakly charged, weak interaction, more or less neutral, no clustering
- mostly for dipole-dipole interaction
- define sphere(cavity) N_i of radius r_c
- calculate forces inside exactly
- treat rest as a **dieletric continuum** of dielectric constant ε_S (model parameter)

(Reaction) Field of cavity N_i generated by the dipole moments μ_j of the particles inside the cavity:

$$\mathbf{E}_i = \frac{2(\varepsilon_S - 1)}{2\varepsilon_S + 1} \frac{1}{r_c^3} g \sum_{j \in N_i} \mu_j$$

Total force on particle

$$\mathbf{F}_i = \sum_{j \in N_i} \mathbf{F}_{ij} + \mathbf{E}_i \times \mu_i$$

where \mathbf{F}_{ij} are local forces from neighbors.

Weight function to avoid jump in the forces each time a particle enter or leaves cavity

$$g(\mathbf{r}_j) = \begin{cases} 1, & \text{for } r_j < r_i \\ \frac{r_c - r_j}{r_c - r_t} & \text{for } r_t \le r_j \le r_c \\ 0, & \text{for } r_c < r_j \end{cases}$$

with $r_t \approx 0.95 r_c$

Modified Coulomb potential due to reaction field method

$$U_c = \frac{1}{4\pi\epsilon_0} \sum_{i>j} q_i q_j \left(\frac{1}{r_{ij} - \frac{B_0 r_{ij}^2}{2R_c^3}}\right)$$

infinite sum is replaced by final one plus reaction field

14 Particle-Mesh algorithm

- Put fine mesh on top of system $(M \approx N)$
- Distribute charges onto mesh points

- Calculate the electrostatic potential by solving Poisson equation on the mesh using FFT
- Calculate force on each particle by numerically differentiating the potential and interpolating back from the mesh to the particle position
- Nearest Grid Point (NGP): put particle on nearest grid point and also evaluate it force ate nearest point
- Cloud In Cell (CIC): Assign the charge to the 2^d nearest grid points and also interpolate from these 2^d grid points.
- method goes like $\mathcal{O}(N \log N)$ due to FFT

Criteria for a good PM scheme

- Erros should vanish at large particle distances
- momentum conservation: $|\mathbf{F}_{ij} = -\mathbf{F}_{ij}|$
- charges on mesh and interpolated forces should

Weaknesses of PM algorithm

- very inhomogeneous distribution of masses
- strong correlations, like bound states
- complex geometries
- \rightarrow use P^3M , AP^3M , treed codes or multipole expansion

Distribution for a charge q at position (x, y) to the four corners of cell (i, j) for CIC

$$\rho_{ij} = q(x_{i+1} - x)(y_{i+1} - y)$$

$$\rho_{i+1j} = q(x - x_i)(y_{i+1} - y)$$

$$\rho_{ij+1} = q(x_{i+1} - x)(y - y_{i+1})$$

$$\rho_{i+1j+1} = q(x - x_i)(y - y_{i+1})$$

Solve Poisson in Fourier space

$$\phi(\mathbf{r}) = \int \rho(\mathbf{r}') g(\mathbf{r} - \mathbf{r}') \, \mathrm{d}^d \mathbf{r}'$$

with **Green's function** for 3D gravity $g(\mathbf{r}) = \frac{G}{\|\mathbf{r}\|}$

Fourier transform

$$\widehat{\phi}(\mathbf{k}) = \widehat{\rho}(\mathbf{k})\widehat{g}(\mathbf{k})$$

with
$$\widehat{g}(\mathbf{k}) = \frac{G}{\mathbf{k}^2}$$
 or on finite lattice of size L^3
 $\widehat{g}(\mathbf{k}) \propto \frac{1}{\sin^2(k_x \frac{L}{2}) + \sin^2(k_y \frac{L}{2}) + \sin^2(k_z \frac{L}{2})}$

$$\mathbf{F}(\mathbf{r}_{ij}) = -\nabla\phi(\mathbf{r}_{ij})$$

Force at particle position is obtained through interpolation over a neighborhood of grid points for each component:

$$F^{(k)}(\mathbf{r}) = \sum_{j} W(\mathbf{r} - \mathbf{r}_{j}) F^{(k)}(\mathbf{r}_{j})$$

14.1 P^3M algorithm

$P^{3}M =$ **Particle-Particle-Particle-Mesh**

 \rightarrow split force into **short** and **long range** part: $\mathbf{F} = \mathbf{F}_s + \mathbf{F}_l$

- \mathbf{F}_l : small and smooth at short distances, calculated using PM algorithm
- \mathbf{F}_s : is calculated exactly by solving Newton's equation
- \rightarrow field is no longer independent of particle any more

14.2 $AP^{3}M$ algorithm

- Adaptive P^3M
- for homogeneous mass distribution $F_s \sim \mathcal{O}(N)$ and $F_l \sim \mathcal{O}(N \log N)$
- masses cluster under gravity and then $F_s \sim \mathcal{O}(N^2)$
- \rightarrow refine mesh in regions where density of masses is higher

14.3 Tree codes

- treat far-away clusters as quasi-particles
- they form hierarchical structures (clusters of clusters)
- bookeping of structures by trees (e.g. wuad trees)
- also usable in linked cell algorithm when one has particles i.e. cells of very different size

14.4 Multipole expansion

- **FMM** Fast Multipole Method
- calculate force from high order multipole expansion
- implies high computational effort to reach sufficient accuracy $\sim (N \log N)$
- used in combination with tree codes

15 Canonical Ensemble Molecular Dynamics

Temperature measurement Equipartition theorem

$$\left\langle p_i^{(\alpha)} \frac{\partial \mathcal{H}}{\partial p_i^{(\alpha)}} \right\rangle = \left\langle q_i^{(\alpha)} \frac{\partial \mathcal{H}}{\partial q_i^{(\alpha)}} \right\rangle = kT$$

such that for one particle

$$3kT = \left\langle \mathbf{p}_i \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i} \right\rangle = \left\langle \sum_{\alpha} p_i^{\alpha} \frac{2p_i^{(\alpha)}}{2m_i} \right\rangle = 2\frac{1}{2m_i} \left\langle \mathbf{p}_i^2 \right\rangle = 2E_{\mathrm{kin},i}$$

Instantaneous temperature \mathcal{T}

$$\mathcal{T} \equiv \frac{2}{k(3N-3)} \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m_i}$$

where 3 degrees of freedom are subtracted to exclude the overall translation of the whole system.

15.1 Velocity rescaling

Simulate a given fixed temperature T

- Each time step **rescale** all velocities by a factor α : $\mathbf{v}_i \rightarrow \alpha \mathbf{v}_i$
- \rightarrow measured temperature scales as $\mathcal{T} \rightarrow \alpha^2 \mathcal{T}$
- in order to stay at temperatur T we must use

$$\alpha = \sqrt{\frac{T}{\mathcal{T}}}$$

- **main problem**: one changes physics and in particular time
- soften problem using relaxation time t_T

$$\alpha = \sqrt{q + \frac{\Delta t}{t_T} \left(\frac{T}{T} - 1\right)}$$

 still does not obay Maxwell-Boltzmann → only good to initialize a configuration at given temperature

15.2 Constraint method

Add a friction term to the equation of motion

$$\dot{\mathbf{p}} = \mathbf{f}_i - \xi \mathbf{p}_i, \quad \mathbf{p}_i = m_i \dot{\mathbf{x}}_i$$

- friction with *both* signs possible
- system becomes dissipative
- can be interpreted as Langrange multiplier

Berendsen et al define

$$\xi = \gamma \left(q - \frac{T}{\mathcal{T}} \right)$$

15.3 Stochastic method

- combine molecular MD with Monte Carlo
- very *n* time steps select randomly one particle and give **new momentum** according to **Maxwell-Boltzmann distribution**:

$$P(\mathbf{p}) = \frac{1}{(\pi kT)^{3/2}} e^{-\frac{-(\mathbf{p}-\mathbf{p}_0)^2}{kT}}$$

• adjustable model n where κ is the thermal conductivity

$$n^{-1} \propto rac{\kappa}{\kappa
ho^{1/3} N^{2/3}}$$

- for n to small we have pure Monte Carlo and lose the real time scale,e.g. long time tail of the velocity correlation
- for *n* too large coupling to the heat bath is too weak, equilibration is slow and we work rather microcanonically

15.4 Nose-Hoover thermostat

New degree of freedom s

which describes the heat bath (can transfer heat from an to the system)

$$\mathcal{V}(s) = (3N+1)kT\log s, \quad K(s) = \frac{1}{2}Q\dot{s}^2$$

where Q can be interpreted as **thermal inertia**, controlling the energy flow between system and heat bath.

Coupling to particle motion by changing the time scale dt' = s dt:

$$\mathbf{v}'_i = \mathrm{d}\mathbf{x}_i t' = \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{\mathbf{v}_i}{s}$$
$$\mathbf{p}'_i = \frac{\mathrm{d}K}{\mathrm{d}\mathbf{v}'_i} = \frac{\mathrm{d}K}{\mathrm{d}\mathbf{v}_i} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{v}'} = s\mathbf{p}_i$$
$$\Rightarrow \mathbf{p}'_i = m_i s^2 \mathbf{v}'_i$$

New Hamiltonian

$$\mathcal{H} = \sum_{i=1}^{N} \frac{\mathbf{p}_i'^2}{2m_i s^2} + \frac{1}{2}Q\dot{s}^2 + \mathcal{V}(\mathbf{x}_1, \dots, \mathbf{x}_N) + \mathcal{V}(s)$$

Define $p_s \equiv Q\dot{s}$, then **Hamilton equations** in virtual time give:

$$\begin{aligned} \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t'} &= \frac{\partial \mathcal{H}}{\partial \mathbf{p}'_i} = \frac{\mathbf{p}'_i}{m_i s^2} \\ \frac{\mathrm{d}s}{\mathrm{d}t'} &= \frac{\partial \mathcal{H}}{\partial p_s} = \frac{p_s}{Q} \\ \frac{\mathrm{d}\mathbf{p}'_i}{\mathrm{d}t'} &= -\frac{\partial \mathcal{H}}{\partial \mathbf{x}_i} = -\nabla_{\mathbf{x}_i} \mathcal{V}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \mathbf{f}_i \\ \frac{\mathrm{d}p_s}{\mathrm{d}t'} &= -\frac{\partial \mathcal{H}}{\partial s} = \frac{1}{s} \left(\sum_{i=1}^N \frac{\mathbf{p}_i^2}{m_i s^2} - (3N+1)kT \right) \\ \to \mathbf{p}'_i &= m_i s^2 \dot{\mathbf{x}}_i \\ \frac{\mathrm{d}\mathbf{p}'_i}{\mathrm{d}t'} &= 2m_i s \dot{s} \dot{\mathbf{x}}_i + m_i s^2 \ddot{\mathbf{x}}_i \end{aligned}$$

Equations of motion in virtual time t'

$$m_{i}s^{2}\ddot{\mathbf{x}}_{i} = \mathbf{f}_{i} - 2m_{i}\dot{s}s\dot{\mathbf{x}}_{i}, \quad Q\ddot{s} = \sum_{i=1}^{N} m_{i}s\dot{\mathbf{x}}_{i}^{2} - \frac{1}{s}(3N+1)kT$$

 \rightarrow entire system is conservative and its ensemble micro-canonical.

Transformation to real time using $\Delta t =$ we have the Hamilton equations

$$\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} = s\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t'} = \frac{\mathbf{p}'_i}{m_i s} = \frac{\mathbf{p}_i}{m_i}$$

$$\frac{\mathrm{d}s}{\mathrm{d}t} = s\frac{\mathrm{d}s}{\mathrm{d}t'} = s\frac{p_s}{Q}$$

$$\frac{\mathrm{d}\mathbf{p}_i}{\mathrm{d}t} = s\frac{\mathrm{d}}{\mathrm{d}t'}\frac{\mathbf{p}'_i}{s} = \frac{\mathrm{d}\mathbf{p}'_i}{\mathrm{d}t'} - \frac{1}{s}\frac{\mathrm{d}s}{\mathrm{d}t'}\mathbf{p}'_i = \mathbf{f}_i - \frac{1}{s}\frac{\mathrm{d}s}{\mathrm{d}t}\mathbf{p}_i$$

$$\frac{\mathrm{d}p_s}{\mathrm{d}t} = s\frac{\mathrm{d}p_s}{\mathrm{d}t'} = \sum_{i=1}^N \frac{\mathbf{p}_i^2}{m_i} - (3N+1)kT$$

 $\mathbf{p}'_i = s\mathbf{p}_i$

Equations of motion in real space

$$\ddot{\mathbf{x}}_{i} = \frac{\mathbf{f}_{i}}{m_{i}} - \xi \dot{\mathbf{x}}_{i}, \quad \frac{1}{2}Q\dot{\xi} = \frac{1}{2}\sum_{i=1}^{N}m_{i}\dot{\mathbf{x}}_{i}^{2} - \frac{1}{2}(3N+1)kT$$

with $\xi \equiv \frac{\dot{s}}{s}$. The log *s* is needed such that the total energy, obtained from integration is $\boxed{\frac{d\log s}{dt} = \xi}$

Choice of Q

- must be chosen empirically
- too large Q leads to slow equilibration,
- for $Q \to \infty$ microcanonical MD is recovered
- Q too small leads to spurious temperature fluctuations SLIDE 111
- $\bullet \rightarrow$ check that the wisth of temperature distribution follows

$$\overline{\Delta T} = \sqrt{\frac{2}{Nd}}\overline{T}$$

PARTIONFUNCTION \rightarrow ADD NEW SLIDES 133 through 135

- only method with a single friction parameter that gives the correct canonical distribution
- Hoover thermostate satisfies Liouville equation, i.e. density of states is conserved in phase space

16 Constant pressure ensemble

Generalized equipartition theorem

$$\left\langle \mathbf{p}_{i} \frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}} \right\rangle = \left\langle \mathbf{q}_{i} \frac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} \right\rangle = 3kT, \quad \mathcal{H} = K(\mathbf{p}) + \mathcal{V}(\mathbf{x})$$

Split potential forces into forces from walls and forces from particles

$$\frac{1}{3} \left\langle \sum_{i=1}^{N} \mathbf{x}_{i} \cdot \nabla_{\mathbf{x}_{i}} \mathcal{V}(\mathbf{x}_{i}) \right\rangle = NkT$$
$$\frac{1}{3} \left\langle \sum_{i=1}^{N} \mathbf{x}_{i} \cdot \left(\mathbf{f}_{i}^{\text{ext}} + \mathbf{f}_{i}^{\text{part}}\right) \right\rangle = -NkT$$
$$\frac{1}{3} \left\langle \sum_{i=1}^{N} \mathbf{x}_{i} \cdot \mathbf{f}_{i}^{\text{ext}} \right\rangle + \underbrace{\frac{1}{3} \left\langle \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{f}_{i}^{\text{part}} \right\rangle}_{\equiv w \text{ virial}} = -NkT$$

Then

$$\frac{1}{3} \left\langle \sum_{i=1}^{N} \mathbf{x}_{i} \cdot \mathbf{f}_{i}^{\text{ext}} \right\rangle = -\frac{1}{3} \int_{\Gamma} p \mathbf{x} \, \mathrm{d} \mathbf{A}$$
$$= -\frac{1}{3} p \int_{V} \nabla \cdot \mathbf{c} \, \mathrm{d} V = -p V$$

Instantaneous pressure

$$\mathcal{P}V \equiv = NkT + \langle w \rangle$$

 \rightarrow keep pressure p fixed by changing the V using a piston of mass W. ADD SLIDE 121

16.1 Coordinate rescaling (Anderson)

Volume change

$$V = 1 - \alpha_t \frac{\Delta t}{t_p} (p - \mathcal{P})$$

- α_T isothermal compressibility
- t_p relaxation time for the pressure
- \rightarrow corresponds to rescaling of length $\mathbf{x} \rightarrow V^{1/3}\mathbf{x}$

16.2 Berendsen thermostat

New Hamiltonian

$$\mathcal{H} = \sum_{i=1}^{N} \frac{1}{2} m_i \mathbf{x}_i^2 + \underbrace{\frac{1}{2} W \dot{V}^2}_{E_k in \text{ of Volume change}} + V(\mathbf{x}_1, \dots, \mathbf{x}_N) + pV$$

where the new variable V is a **volume change** controlled by a piston of mass W which defines a **canonical momentum**

 $p_V = W \dot{V}$

Equations of motion

$$\ddot{\mathbf{x}}_{\mathbf{i}} = \frac{\mathbf{f}_i}{m_i} - \frac{\dot{V}}{3V}\dot{\mathbf{x}}_{\mathbf{i}}, \quad W\dot{V} = \frac{1}{3v}\sum_{i=1}^N m_i \dot{\mathbf{x}}_{\mathbf{i}}^2 + \frac{1}{3V}\sum_{i=1}^n \mathbf{f}_i \mathbf{x}_i - p$$

16.3 Parinello-Rahman barostat

 \to also change the shape of the box described three vectors ${\bf a}, {\bf b}$ and ${\bf c}$ and thus having a volume

$$V = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det(\mathbf{H}), \quad \mathbf{H} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$$

Position of particle i in this box

$$\mathbf{r}_i$$
 = $\mathbf{Hs}_i = x_i \mathbf{a} + y_i \mathbf{b} + z_i \mathbf{c}, \quad x_i, y_i, z_i \in (0, 1)$

Distance between particles i and j

$$\mathbf{r}_{ij}^2 = \mathbf{s}_{ij}^T \mathbf{G} \mathbf{s}_{ij}, \quad \mathbf{G} = \mathbf{H}^T \mathbf{H}$$

Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{i} m_{i} \mathbf{\dot{s}_{i}}^{T} \mathbf{G} \mathbf{\dot{s}_{i}} + \sum_{ij} \mathcal{V}(\mathbf{r}_{ij}) + \operatorname{Tr} \mathbf{\dot{H}}^{T} \mathbf{\dot{H}} + pV$$

equations of motion

$$m_i \ddot{\mathbf{s}}_i = \mathbf{H}^{-1} - m_i \mathbf{G}^{-1} (\dot{\mathbf{G}} \dot{\mathbf{s}}_i), \quad W \ddot{\mathbf{H}} = \mathbf{p} V (\mathbf{H}^{-1})^T$$

16.4 NPT ensemble

ADD (eventually) SLIDE 127f SLIDE 127f

17 Event driven Molecular Dynamics

- flow of the program is not determined by **loops** but by events
- for riged bodies of finite volume one would normally want to describes by a **hard core potential** in classicla MF
- event driven simulations: collisions are considere as instantaneous events and particles do not interact in between
- \rightarrow no forces calculated
- \rightarrow only binary collisions considered
- $\bullet~\rightarrow$ ballistic tracectories between collision
- calculate time t_c between two collision
- obtain velocities of the two particles **after** the collisions from the velocities of ther particles from a **look-up table**

17.1 Collision event (2d)

ADD SLIDE 5 Consider collision of to rigid disks *i* and *j*, where the **collision angle** θ is between $\boxed{\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j}$ and

relative velocity $vbv_{ij} = \mathbf{v}_i - \mathbf{v}_j$

17.2 Collision time t_c

- 1. Let t_0 be the time at which the **last collision** occured and set $\mathbf{r}_{ij}^0 = \mathbf{r}_{ij}(t_0)$.
- 2. Calculate for each pair of particles (i, j) the time t_{ij} when the **next collision** will occur.

$$|\mathbf{r}_{ij}(t_{ij})| = R_i + R_j \implies |\mathbf{r}_{ij}(t_0) + \mathbf{v}_{ij}t_{ij}| = R_i + R_j$$

$$\Rightarrow v_{ij}^2 t_{ij}^2 + 2(\mathbf{r}_{ij}^0 \mathbf{v}_{ij}) + (\mathbf{r}_{ij}^0)^2 - (R_i + R_j)^2 = 0$$

3. the time t_c when the next collision in the system occurs is the minimum over all pairs (i, j)

$$t_c = \min_{ij}(t_{ij})$$

17.3 Propagation step

- due to global minimization not easily parallelizable or vectorizable
- once t_c is determined, particles are moved by

$$\mathbf{r}_{i}^{!} = \mathbf{r}_{i} + \mathbf{v}_{i}t_{c}, \quad \phi_{i}^{!} = \phi_{i} + \omega_{i}t_{c} \; \forall i$$

- then collision between the pair (i^*, j^*) occurs
- one can also add simple accelerations like gravity
- knowon position and angle of particle i at a time t^* since which it had no collision, one can determine position and angle at later time as

$$\mathbf{r}_{i}(t) = \mathbf{r}_{i}(t^{*}) + \mathbf{v}_{i}(t^{*}-t) + \frac{1}{2}g\mathbf{e}_{z}(t^{*}-t)^{2}, \quad \phi_{i}(t) = \phi_{i}(t^{*}) + \omega_{i}(t^{*}-t)$$

17.4 Lubachevsky tricks

- simple loop over all pairs to determine t_c is $\mathcal{O}(N^2)$
- using lists of events and binary stacks: $\mathcal{O}(N \log N)$
- Create **list of events** (length N) storing for each particle **last event** and **next event**
- \rightarrow keep track of time of event and partner particle involved
- from list one get for each particle i time $t^{(i)}$ for the next collision involving thus particle

•
$$\rightarrow$$
 we can find in $\mathcal{O}(N) \left| t_c = \min_i(t^{(i)}) \right|$

Implementation Organize $t^{(i)}$ in increasing order implicitely in a **stack**

- vector part [m] points to particle *i* which is at position *m* in the stack
- vecotr **pos[i]** gives position *m* of particle *i* in the stack
- this constitutes implicit ordering og the collision times $t^{(i)}$, where m = 1 points to the smallest time

- part[1] is particle with minimal collisio time: $t_c = t^{(part[1])}$
- after event the time $t^{(part[1])}$ must be updated and the list reordered
- store additionally to position and velocity for each particle the **last event** and **next event** in 6 arrays of dimension N
- Last event is needed as particles are only updated after being involved in an event
- After event for both particles all six entries (event times, new partners, positions and velocities) have to be updated
- additionally part[m] has to be reordered

Complexity

- Straightforward calculation of the new collision times would be of order $\mathcal{O}(N)$ when checking for both particles with all other particles
- Collision lists for each particle or division into sectors (cells) reduce the order to $\mathcal{O}(1)$ per event
- sector boundaries have to be treated similar as obstacles, i.e. when particles cross sector boundaries a collision event happens
- Re-ordering the heap after each event is of order $\mathcal{O}(\log N)$ when using, e.g. binary trees for sorting

Depth of the tree $(\mathcal{O}(\log_2 N))$ determines maximum number of comparisons for re-ordering.

17.5 Collision with perfect slip

- in tangential direction
- no momentum transferred
- \rightarrow angular velocity irrelevant

Momentum conservation

$$\mathbf{v}_i^{ ext{after}} = \mathbf{v}_i^{ ext{before}} + rac{\Delta \mathbf{p}_n}{m_i}, \quad \mathbf{v}_j^{ ext{after}} = \mathbf{v}_j^{ ext{before}} + rac{\Delta \mathbf{p}_n}{m_j}$$

where $\Delta \mathbf{p}_n = \Delta \mathbf{p} \cdot \mathbf{n}$ denotes the normal component of the momentum difference.

Energy conservation

$$\frac{1}{2}m_i(\mathbf{v}_i^{\text{before}})^2 \frac{1}{2}m_j(\mathbf{v}_j^{\text{before}})^2 = \frac{1}{2}m_i(\mathbf{v}_i^{\text{after}})^2 \frac{1}{2}m_j(\mathbf{v}_j^{\text{after}})^2$$

The momentum change must be **parallel to normal direction n** and therefore

$$\Delta \mathbf{p}_n = -2m_{\text{eff}} \left[(\mathbf{v}_i^{\text{before}} - \mathbf{v}_j^{\text{before}}) \mathbf{n} \right] \mathbf{n}, \quad m_{\text{eff}} \equiv \frac{m_i m_j}{m_i + m_j}$$

for collision between particles i and j

$$\begin{split} \mathbf{v}_{i}^{\text{after}} &= \mathbf{v}_{i}^{\text{before}} - \left[(\mathbf{v}_{i}^{\text{before}} - \mathbf{v}_{j}^{\text{before}}) \mathbf{n} \right] \mathbf{n} \\ \mathbf{v}_{j}^{\text{after}} &= \mathbf{v}_{i}^{\text{before}} + \left[(\mathbf{v}_{i}^{\text{before}} - \mathbf{v}_{j}^{\text{before}}) \mathbf{n} \right] \mathbf{n} \end{split}$$

for $m_i = m_j$ we have

$$\mathbf{v}_i^{ ext{after}} = \mathbf{v}_i^{ ext{before}} - \mathbf{u}_{ij}^n \mathbf{n}$$

 $\mathbf{v}_j^{ ext{after}} = \mathbf{v}_j^{ ext{before}} - \mathbf{u}_{ij}^n \mathbf{n}$

 \rightarrow make look-up table

17.6 Collision with rotation

Equation of motion for rotation

$$I\frac{\mathrm{d}\omega_i}{\mathrm{d}t} = \mathbf{r} \times \mathbf{f}_{ij} = m\mathbf{r} \times \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t}$$

Consider collision between spheres i and j having the same radius R, moment of inertia I and mass m

$$\begin{split} I(\omega'_i - \omega_i) &= -Rm(\mathbf{v}'_i - \mathbf{v}_i) \times \mathbf{n} \\ I(\omega'_j - \omega_j) &= Rm(\mathbf{v}'_j - \mathbf{v}_j) \times \mathbf{n} \\ \mathbf{v}'_i + \mathbf{v}'_j &= \mathbf{v}_i + \mathbf{v}_j \\ \Rightarrow \omega'_i - \omega_i &= \omega'_j - \omega_j = \frac{Rm}{I}(\mathbf{v}'_i - \mathbf{v}_i) \times \mathbf{n} \end{split}$$

17.7 Collision with general slip

Condition for the relative velocity ${\bf u}$ between the particles at their contact point

$$\mathbf{u}_{ij}^{n} = (\mathbf{u}_{ij}\mathbf{n})\mathbf{n}$$
$$\mathbf{u}_{ij}^{t} = \mathbf{u}_{ij} \times \mathbf{n} = [(\mathbf{v}_{i} - \mathbf{v}_{j}) - R(\omega_{i} + \omega_{j})] \times \mathbf{n}$$

General slip condition

$$\mathbf{u}_{ij}^{t'} = e_t \mathbf{u}_{ij}^t, \quad |e_t| = 1, \quad e_t = \begin{cases} 1, & \text{perfect slip} \\ 0, & \text{no slip} \end{cases}$$

$$\begin{split} \mathbf{v}'_i &= \mathbf{v}_i - \mathbf{u}^n_{ij} - \frac{(1-e_t)\mathbf{u}^t_{ij}}{2(1+q)} \quad \mathbf{v}'_j = \mathbf{v}_j - \mathbf{u}^n_{ij} - \frac{(1-e_t)\mathbf{u}^t_{ij}}{2(1+q)} \\ \omega'_i &= \omega_i - \frac{(1-e_t)\mathbf{u}^t_{ij} \times \mathbf{n}}{2R(1+q^{-1})} \quad \omega'_j = \omega_j - \frac{(1-e_t)\mathbf{u}^t_{ij} \times \mathbf{n}}{2R(1+q^{-1})} \end{split}$$

where
$$\frac{m_{\text{eff}R^2}}{I_{\text{eff}}}$$
, make a look-up table

17.8 Collision without slip

Use conservation of momentum, energy

$$E = \frac{1}{2} \sum_{i=1}^{2} m_i v_i^2 + \frac{1}{2} \sum_{i=1}^{2} I_i \omega_i^2 = \text{const}, \quad J = \sum_{i=1}^{2} m_i (\mathbf{r}_i \times \mathbf{v}_i) = \sum_{i=1}^{2} I_i \omega_i^2 = \text{const},$$

momentum transfer

$$\Delta \mathbf{p} = -2m_{\text{eff}} \left[(\mathbf{v}_{ij}\mathbf{n})\mathbf{n} + \frac{I}{I + m_{\text{eff}}R^2} (\mathbf{v}_{ij}\mathbf{s})\mathbf{s} \right]$$

17.9 Inelastic collision

- most real collisions are inelastic
- energy dissipated through vibrations, plastic deformation, heat production
- dissipation quantified through material dependent restitution coefficient r which is fraction of *not* dissipated energy after a collision
- r = 1 for elastic collision, r = 0 perfect plasticity

Measurement of restitution coefficient

Let particle fall from height h^{initial} on a plate of same material and measuring rebounce height h^{final}

$$r = r_n = \frac{E^{\text{after}}}{E^{\text{before}}} = \frac{h^{\text{final}}}{h^{\text{initial}}} = \left(\frac{v_n^{\text{after}}}{v_n^{\text{before}}}\right)^2$$

Normal and tangential coefficients

$$e_n = \sqrt{r_n} = \frac{v_n^{\text{after}}}{v_n^{\text{before}}}, \quad e_t = \sqrt{r_t} = \frac{v_t^{\text{after}}}{v_t^{\text{before}}}$$

Energy conservation condition replaced by

$$(\mathbf{v}_{j}^{\text{after}} - \mathbf{v}_{i}^{\text{after}}) \cdot \mathbf{n} = -e_{n}(\mathbf{v}_{j}^{\text{before}} - \mathbf{v}_{i}^{\text{before}}) \cdot \mathbf{n}$$

examples for e_n (steel:0.92, aluminium:0.8, plastic: 0.6)

Inelastic normal collision

normal component of relative velocity ${\bf u}$ between particles at their contact point

$$\mathbf{u}_{ij}^n = (\mathbf{u}_{ij}\mathbf{n})\mathbf{n} = [(\mathbf{v}_i - \mathbf{v}_j)\mathbf{n}] \cdot \mathbf{n}$$

dissipation through normal coefficient of restitution e_n

$$\mathbf{u}_{ij}^{n'} = e_n \mathbf{u}_{ij}^n$$

$$\Delta \mathbf{p}_n = -m_{\text{eff}}(1+e_n) \left[(\mathbf{v}_i^{\text{before}} - \mathbf{v}_j^{\text{before}}) \cdot \mathbf{n} \right] \mathbf{n}$$

General slip

$$\begin{split} \mathbf{v}'_{i} &= \mathbf{v}_{i} - \frac{1+e_{n}}{2} \mathbf{u}_{ij}^{n} - \frac{(1-e_{t})\mathbf{u}_{ij}^{t}}{2(1+q)} \quad \mathbf{v}'_{j} = \mathbf{v}_{j} + \frac{1+e_{n}}{2} \mathbf{u}_{ij}^{n} + \frac{(1-e_{t})\mathbf{u}_{ij}^{n}}{2(1+q)} \\ \omega'_{i} &= \omega_{i} - \frac{(1-e_{t})\mathbf{u}_{ij}^{t} \times \mathbf{n}}{2R(1+q^{-1})} \qquad \qquad \omega'_{j} = \omega_{j} - \frac{(1-e_{t})\mathbf{u}_{ij}^{t} \times \mathbf{n}}{2R(1+q^{-1})} \end{split}$$

where $\frac{m_{\text{eff}R^2}}{I_{\text{eff}}}$, make a look-up table

17.10 Finite time singularity

If an inelastic sphere jumps on a plate it will perform in a finite time $t_{\rm tot}$ an infinity of collisions.

$$\int_{2}^{2} t_{\text{tot}} = \sum_{j=1}^{\infty} t_j = 2\sqrt{\frac{2h^{\text{initial}}}{g}} \sum_{j=1}^{\infty} \sqrt{r^j} = 2\sqrt{\frac{2h^{\text{initial}}}{g}} \left(\frac{1}{1-\sqrt{r}}-1\right)$$

Effect occurs for three particles if $r < 7 - 4\sqrt{3}$

Minimum number of particles for which if $r \approx 1$

$$n_{\min} \sim -\frac{\log(1-r)}{1-r}$$